Nav: Home

UCLA bioengineers use magnetic force to manage pain

August 07, 2018

UCLA bioengineers have demonstrated that a gel-like material containing tiny magnetic particles could be used to manage chronic pain from disease or injury. Broadly, the study demonstrates the promising use of biomechanical forces that push and pull on cells to treat disease.

"Much of mainstream modern medicine centers on using pharmaceuticals to make chemical or molecular changes inside the body to treat disease," said Dino Di Carlo, UCLA professor of bioengineering and the principal investigator of the study. "However, recent breakthroughs in the control of forces at small scales have opened up a new treatment idea -- using physical force to kick-start helpful changes inside cells. There's a long way to go, but this early work shows this path toward so-called 'mechanoceuticals' is a promising one."

The researchers used small magnetic particles inside a gel to control cell proteins that respond to mechanical stimulation, and which control the flow of certain ions. These proteins are on the cell's membrane and play a role in the sensations of touch and pain. The study was published in Advanced Materials.

"Our results show that through exploiting 'neural network homeostasis,' which is the idea of returning a biological system to a stable state, it is possible to lessen the signals of pain through the nervous system," said Andy Kah Ping Tay, a recent UCLA doctoral graduate who was the lead author of the study. "Ultimately, this could lead to new ways to provide therapeutic pain relief."

To make the magnetized gel, they started with a polymer, hyaluronic acid, a gel-like material found naturally in the spinal cord and the brain, which helps provide structural support to cells in those parts of the body. The material is also produced artificially and used in cosmetics and beauty products as a filler and moisture barrier.

The researchers put tiny magnetic particles into the biocompatible gel. Next, they grew a type of primary neural cell -- dorsal root ganglion neurons -- in the gel.

In laboratory tests, they applied a magnetic field to generate a "pulling" force on the particles, which was transmitted through the gel to the embedded cells.

The researchers found that the magnetically induced mechanical forces led to an increase in calcium ions in the neurons. This influx of ions indicates that the neurons responded to the forces. By increasing the force steadily over time, the researchers found that the neurons adapted to the continuous stimulation by reducing the signals for pain.

In the study, the team suggested that the magnetic gel could be tailored with different biomaterials for therapies for cardiac and muscle disorders. These types of biomaterials could also be used in scientific studies to emulate concussions or other traumatic events where cells in the body are impacted by significant physical forces.

Tay is currently a postdoctoral fellow at Stanford University. He will start a faculty appointment at National University of Singapore next year.

Other study authors include UCLA graduate student Ali Sohrabi; Stephanie Seidlits, a UCLA assistant professor of bioengineering; and Kate Poole of the University of New South Wales in Australia.

The research was supported by the National Institutes of Health. Tay was supported at UCLA by a fellowship from the International Brain Research Organization; and the Endeavour Research Fellowship from the Australian government's Department of Education and Training.
-end-


UCLA Samueli School of Engineering

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.