Nav: Home

Study finds managed waterways are not isolated from effects of climate change

August 07, 2018

BLOOMINGTON, Ind. -- A new study led by researchers at Indiana University has found that modifications such as dams and reservoirs in the United States and Canada do not isolate rivers and streams from the effects of climate change.

The analysis published Aug. 6 in the Proceedings of the National Academy of Sciences shows that the flow of water in managed waterways has diminished in the southern and western United States over the past three decades in the same manner as waterways in these regions without modifications.

Similarly, the study also found that the flow of water in the rivers and stream of the northeastern United States, as well as in the northern Great Plains and southern prairies of Canada, has grown stronger over the past 30 years -- the same as natural waterways in these regions.

"This study finds that large-scale climate trends are already affecting water availability in many regions of the southern and western United States," said Darren Ficklin, an associate professor in the IU Bloomington College of Arts and Sciences Department of Geography and a member of the Environmental Resilience Institute at IU, a part of the university's Prepared for Environmental Change Grand Challenge. "This is significant given the importance of streams and rivers for agricultural use, urban drinking water and aquatic ecosystems in these regions."

The study is the first analysis to provide an in-depth look at the effect of climate change on managed waterways in the U.S. and Canada as compared to unmanaged streams and rivers. Traditional research on the effects of climate change on waterways focused on unmanaged -- or "natural" -- streams and rivers, as water-management techniques were thought to obscure "climate signals" in research.

To conduct the study, Ficklin and colleagues analyzed data on over 3,000 North American rivers and streams between 1981 and 2015 from the U.S. Geological Survey and the Canadian Department of the Environment. Of these waterways, 2,549 were considered managed resources. Only 570 waterways were considered natural -- or about two out of every nine waterways in these countries.

A similar proportion of managed and natural waterways exists across the globe, Ficklin said. The ability to use these streams and rivers in climate research would open up many regions to observations about how changes in weather patterns, temperature and rainfall affect water access and supply.

"We believe that many, many more waterways could be used for climate research," he added. "While certain characteristics like peak and low streamflow may still differ significantly, we find that the recent trends are quite similar."

The study also sheds light on the relatively small impact that water management has on large-scale changes in climate trends.

"Generally, managed watersheds only mitigate the effects of climate change in extremely dry periods," said study co-author Sarah Null of Utah State University. "For the other 99 percent of streamflows, these results suggest that current water management does not counteract the effects of climate change. This would require more innovative and strategic water management methods."

The work doesn't necessarily mean that the current water management methods are ineffective, Ficklin added. But it does suggest that the "signal" of climate change is apparent in typical flows across all waterways, no matter how they're managed. After a certain point, he said, water management is simply unlikely to provide a solution to large-scale changes in water availability.

"What this means for people in drying areas is that water management is not resulting in 'more water' for agricultural, environmental and urban purposes," he said. "People in drying areas simply have an increasingly limited amount of water to use. Ultimately, water management methods can't simply change that."

Prepared for Environmental Change, the second of Indiana University's Grand Challenges initiatives, brings together a broad, bipartisan coalition of government, business, nonprofit and community leaders to help Indiana better prepare for the challenges that environmental change brings to our economy, health and livelihood.
-end-
Additional authors on the study are Scott M. Robeson of the IU Department of Geography, John T. Abatzoglou of the University of Idaho and Jason H. Knouft of Saint Louis University. This work was supported in part by the National Science Foundation.

Indiana University

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.