Nav: Home

Ability to taste RNA speeds the growth and increases survival of fruit fly larvae

August 07, 2018

Fruit fly larvae can taste ribonucleosides, the building blocks of gene transcripts, according to a new study publishing on August 7 in the open-access journal PLOS Biology by Hubert Amrein and Dushyant Mishra of Texas A&M Health Science Center and their colleagues. Moreover, the ability to detect ribonucleosides in the environment helps promote the rapid growth needed by developing larvae and dramatically increases their survival.

Fats, proteins, and carbohydrates make up the bulk of calorically rich macronutrients sought out by animals of all kinds. Taste receptors are generally thought to be attuned to identifying these compounds in the environment, allowing organisms to distinguish them from unpalatable and harmful compounds, which by contrast are usually bitter. Animals also need a fourth major macronutrient class, the ribonucleosides and deoxyribonucleosides, which are used to make RNA and DNA, but because animals can build their own ribonucleosides from carbohydrates and proteins, they had not previously been thought to be sensed by taste receptors.

While testing the ability of fruit fly larvae to detect a variety of sugars, the authors discovered their strong interest in consuming ribose, a sugar component of RNA, as well as RNA itself. The larvae were found to detect these compounds using previously uncharacterized members of the Gustatory Receptor (Gr) protein receptor family, a subfamily called Gr28. Laval taste neurons expressing members of Gr28 were activated by ribose and RNA (but not deoxyribose), and when Gr28 genes were transferred to sugar sensing taste neurons that don't normally express them, these neurons were also activated by ribose and RNA.

This taste for RNA is not just a luxury; the authors found that larvae given food from which ribonucleosides were excluded fared worse than those grown on whole medium, and larvae lacking Gr28 receptors grew slower and had poor survival rates than those with them.

Even though the body can synthesize them, the ability to detect these compounds in the environment provides an advantage to a rapidly growing organism such as the fruit fly larva, the authors argue, since the larva must increase its body weight by 200-fold in only a few days. "We hypothesize that the ability to taste RNA evolved because ingestion, rather than de novo synthesis, provides a survival advantage during this period of extreme growth," Amrein said.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005570

Citation: Mishra D, Thorne N, Miyamoto C, Jagge C, Amrein H (2018) The taste of ribonucleosides: Novel macronutrients essential for larval growth are sensed by Drosophila gustatory receptor proteins. PLoS Biol 16(8): e2005570. https://doi.org/10.1371/journal.pbio.2005570

Image Caption: A Drosophila third instar larva feeds on a strawberry. Macronutrients such as sugar are vital for fruit flies during the larval stage of development where they increase their weight up to several hundred-fold in a matter of days.

Image Credit: Hubert Amrein, amrein@tamhsc.edu

Funding: National Institute of Health https://www.nidcd.nih.gov (grant number NIH-1R21 DC015327). This grant was awarded to HA. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Institute of Health https://www.nidcd.nih.gov (grant number NIH-1RO1GMDC05606). This grant was awarded to HA. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.