Nav: Home

Back to the future: breast cancer reprises pathways found in fetal cells

August 07, 2018

LA JOLLA--(August 7, 2018) Using just a microscope, Italian surgeon Francesco Durante was struck by the similarities between cells in the most malignant cancers and the embryonic cells of the organ in which the cancer originated.

More than a century later, scientists at the Salk Institute have uncovered a reason for the uncanny likeness: cells in human basal-like breast cancers share features with the embryonic mammary (breast) stem cells that are the progenitors of all cell types in the mammary gland (of a mouse). The insights leading to this conclusion are published in the journal Cell Reports on August 7, 2018.

"Durante was prescient," says Professor Geoffrey Wahl, holder of the Daniel and Martina Lewis Chair and senior author of the work. "He anticipated the relatedness of cells in the embryo to those in malignant cancers--and that dormant cancer cells could be 'reawakened' by exposure to 'persistent irritations' that we now recognize as inflammation. We can use the insights gained from our work to develop better diagnostic and treatment strategies."

For example, human breast cancers share some peculiar metabolic features with early embryonic mammary stem cells, which may be possible to target therapeutically. Additionally, proteins specifically expressed in the embryonic cells that are also expressed in the cancers may be used to develop new diagnostic agents or tools for immune therapies.

Cancer has been called a "caricature of development," reprising features of the embryonic stem cell state for their own perverse purposes. So Wahl and his research group at Salk, along with investigator Benjamin Spike of the Huntsman Cancer Institute at the University of Utah, used cutting-edge techniques to generate an atlas of the genes expressed in each breast cell from very early in development until adulthood, a process that required an analysis of many thousands of cells. They used this "single-cell-transcriptome atlas" to compare genes expressed in human breast cancers. This led to an understanding of how the stem cells of the breast arise in early development and how they turn into the two different types of cells that comprise the mature gland.

"There has been intense interest in determining how rare cells in tumors can fuel tumor growth and resistance to therapies," says Spike, who is an assistant professor of oncological sciences at the University of Utah and the paper's co-corresponding author. "Much of the molecular machinery they use to do this appears to be co-opted and corrupted from stem cells and progenitors that used this machinery to build the normal tissue during development. Our study provides an atlas of the responsible genes that can be tested for their potential as therapeutic targets."

"This work shows the diversity of ways that cells can enter the stem state, which is characterized by their plasticity, or developmental flexibility," adds first author Rajshekhar Giraddi, a Salk research associate in Wahl's lab. "This suggests that cancer cells may gain their plasticity by many strategies, similar to those we are discovering in normal development."

This developmental plasticity likely explains how the cells within a single tumor can appear so different from one another and likely underlies the uncanny ability of malignant cancer cells to become resistant to most therapies.

Now, armed with this knowledge of the genetic signatures of different cell states, the lab is developing new ways of looking at the reprogramming of adult cells into states associated with cancer.

"What would be great is if we can figure out how to prevent the reprogramming of cancer cells to become so developmentally plastic." says Wahl. "This plasticity will likely preclude development of a single 'magic bullet' to treat cancer. Rather, cancers are very adaptive diseases, requiring attacking them from multiple directions."
-end-
Other authors included Chi-Yeh Chung, Christy L. Trejo, Christopher Dravis and Luo Wei Rodewald of Salk; Richard E. Heinz, Ozlen Balcioglu, Berhane Hagos, Elnaz Mirzaei Mehrabad, Jae Hwang and Katherine E. Varley of the Huntsman Cancer Institute; Mark Novotny and Roger Lasken of the J. Craig Venter Institute; and Cheng Fan and Charles M. Perou of the University of North Carolina's Lineberger Comprehensive Cancer Center.

The work was funded by the Breast Cancer Research Foundation, the Susan G. Komen foundation (SAC11003), the National Institutes of Health/National Cancer Institute (R35 CA197687), the Salk Institute Cancer Center (NIH-NCI CCSG: P30 CA014195), the Chapman Foundation, the Helmsley Charitable Trust, the Huntsman Cancer Institute Cancer Center (NIH-NCI CCSG: P30 CA42014) and the Huntsman Cancer Foundation.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".