Nav: Home

A marine microbe could play increasingly important role in regulating climate

August 07, 2019

A USC-led research team has found that marine microbes with a special metabolism are ubiquitous and could play an important role in how Earth regulates climate.

The study finds bacteria containing rhodopsins, a sunshine-grabbing pigment, are more abundant than once thought. Unlike algae, they don't pull carbon dioxide (CO2) out of the air. And they will likely become more abundant in warming oceans, signaling a shuffling of microbial communities at the base of the food chain where the nitty-gritty work of energy conversion occurs.

"Oceans are important for climate change because they play a key role in the carbon cycle. Understanding how that works, and the marine organisms involved, helps us refine our climate models to predict climate in the future," said Laura Gómez-Consarnau, assistant professor (research) of biology at the USC Dornsife College of Letters, Arts and Sciences.

The study appears today in Science Advances. Gómez-Consarnau is the lead author among an international team of scientists from California, China, the United Kingdom and Spain.

The findings break from the traditional interpretation of marine ecology found in textbooks, which states that nearly all sunlight in the ocean is captured by chlorophyll in algae. Instead, rhodopsin-equipped bacteria function like hybrid cars, powered by organic matter when available -- as most bacteria are -- and by sunlight when nutrients are scarce.

Rhodopsins were discovered 20 years ago, and scientists at USC and elsewhere have been studying their prevalence and metabolism since. These microbes have light-sensitive protein systems in their cell membranes that trap sunlight, an adaptation analogous to how rods and cones in the human eye gather light.

In this study, researchers trolled a 3,000-mile-long swath of the eastern Atlantic Ocean and Mediterranean Sea in 2014. They sampled microorganisms in the water column down to 200 meters in an attempt to find how widespread rhodopsins are and in what conditions they are favored.

They found that rhodopsin photosystems were much more abundant than previously realized and concentrated in nutrient-poor waters. In such oligotrophic zones, they outperform algae at capturing light. While algae use sunlight and CO2 to produce organic material and oxygen, rhodopsin pigments use light to make adenosine triphosphate, the basic energy currency that drives many cellular processes.

"Rhodopsins appear to be more abundant in a nutrient-poor ocean, and in the future, the ocean will be more nutrient poor as temperatures change," Gómez-Consarnau explained. "So, with fewer nutrients near the surface, algae will have limited photosynthesis, and the rhodopsin process will be more abundant. We may have a shift in the future, which means the ocean won't be able to absorb as much carbon as it does today. So more CO2 gas may remain in the atmosphere, and the planet may warm faster."

So far, computer simulations of what global warming could be like in the future do not yet account for this microbial shift.

Previous studies have shown rhodopsins comprise about 80% of the marine bacteria, based on genetic analyses. But this is the first study to actually measure their concentration in the ocean and where they like to congregate.

The study underscores how scientists are learning new pathways by which organisms gain energy to live. For example, they've long known that plants and algae use chlorophyll to convert sunshine and nutrients into sugars; indeed, about half of all photosynthesis on Earth is performed by algae at the ocean surface. And they've discovered bottom-dwelling life supported by chemical energy from minerals and chemical compounds released from deep-ocean volcanic vents. In this research, they've learned that bacteria, long considered mainly decomposers in an ecosystem, can actually function as a main producer of energy at the ocean surface.

"We estimate that, given the concentrations found in seawater, rhodopsins could capture more light energy than chlorophyll in the ocean," Gómez-Consarnau said.

"These findings change the fundamental assumption that the marine biosphere is only powered by sunlight captured by chlorophylls during algal photosynthesis."

It also means that, years in the future, microbial communities will likely shift, resulting in less carbon fixation in the ocean. To fully evaluate how the findings affect the ocean's capacity to absorb greenhouse gases, Gómez-Consarnau said CO2 fluxes in marine systems will need to be reevaluated and future climate models will have to include this bacterial metabolism.
Research was funded by the Marie Curie Actions-International Outgoing Fellowships (#253970); a U.S. National Science Foundation grant (#OCE1335269); the Simons Foundation (#50972); the Gordon and Betty Moore Foundation Marine Microbiology Initiative (#3779); Project MAR in Spain (#CTM2011-30010-C02-MAR); and the University of Dundee as a registered Scottish charity (#SC015096).

Gómez-Consarnau is the lead author of the study, joined by colleagues Sergio A. Sañudo-Wilhelmy, Naomi M. Levine, Jed A. Fuhrman and Lynda S. Cutter at the USC Dornsife College; John A. Raven of the University of Dundee in Scotland; Deli Wang of the State Key Laboratory of Marine Environmental Science, Xiamen in China; Brian Seegers of the Scripps Research Institute in California; Javier Arístegui of the Universidad de Las Palmas de Gran Canaria in Spain; Josep M. Gasol of the Institut de Ciències del Mar-CMIMA (CSIC) in Spain.

University of Southern California

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at