Measuring electron emission from irradiated biomolecules

August 07, 2020

When fast-moving ions cross paths with large biomolecules, the resulting collisions produce many low-energy electrons which can go on to ionise the molecules even further. To fully understand how biological structures are affected by this radiation, it is important for physicists to measure how electrons are scattered during collisions. So far, however, researchers' understanding of the process has remained limited. In new research published in EPJ D, researchers in India and Argentina, led by Lokesh Tribedi at the Tata Institute of Fundamental Research, have successfully determined the characteristics of electron emission when high-velocity ions collide with adenine - one of the four key nucleobases of DNA.

Since high-energy ions can break strands of DNA as they collide with them, the team's findings could improve our understanding of how radiation damage increases the risk of cancer developing within cells. In their experiment, they considered the 'double differential cross section' (DDCS) of adenine ionisation. This value defines the probability that electrons with specific energies and scattering angles will be produced when ions and molecules collide head-on, and is critical for understanding the extent to which biomolecules will be ionised by the electrons they emit.

To measure the value, Tribedi and colleagues carefully prepared a jet of adenine molecule vapour, which they crossed with a beam of high-energy carbon ions. They then measured the resulting ionisation through the technique of electron spectroscopy, which allowed them to determine the adenine's electron emissions over a wide range of energies and scattering angles. Subsequently, the team could characterise the DDCS of adenine-ion collision; producing a result which largely agreed with predictions made by computer models based on previous theories. Their findings could now lead to important advances in our knowledge of how biomolecules are affected by high-velocity ion radiation; potentially leading to a better understanding of how cancer in cells can arise following radiation damage.
-end-
Reference

S Bhattacharjee, A Mandal, M R Chowdhury, C Bagdia, J M Monti, R D Rivarola, L C Tribedi (2020) Electron emission in ionization of adenine molecule induced by 5 MeV/u bare C ions, European Physical Journal D 74:163, DOI: 10.1140/epjd/e2020-10151-3

Contact

Sabine Lehr
Springer Physics Editorial
Tel: +49-6221-4487-8336
Email: sabine.lehr@springer.com

Springer

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.