New prostate cancer gene identified

August 08, 2004

Phoenix, August 8th, 2004-Researchers at the Translational Genomics Research Institute (TGen) have found a new way to speed the discovery of genes that suppress tumors, and in the process identified a gene that appears to be important in prostate cancer. The findings appeared today in the journal Nature Genetics.

The gene, not previously known to be a tumor suppressor, most likely plays a role in regulating and maintaining normal tissue organization. The researchers have shown that the gene, known as EphB2, is inactivated in prostate cancer. This is the first time abnormalities in the gene have been linked to cancer. They believe loss of the gene's function leads to disorganization of cells and also encourages the growth and survival of prostate cancer cells.

"This finding provides critical insight into the factors that cause prostate cancer, which can be used for development of additional diagnostics and therapeutics for prostate cancer," said Dr. Spyro Mousses, head of TGen's Cancer Drug Development Laboratory and the paper's senior author. "Much additional research is warranted to determine the extent of its involvement in prostate cancer and other cancers as well."

"These findings represent a significant advancement in prostate cancer research, as the number of current treatment options for advanced prostate cancer remains limited," said Dr. John Carpten, Senior Investigator at TGen, Director of its Genetic Basis of Human Disease Division, and Head of the TGen Prostate Cancer Research Unit. "The discovery of mutations in this gene allows us the opportunity to explore a new path towards treating a significant number of men with advanced prostate cancer. As TGen's mission is to translate laboratory findings into the clinic, we hope to use this information to ultimately help provide prostate cancer patients more treatment options and a better quality of life."

The study was the result of an increasing trend in genome research: a massive international collaboration of scientists from several institutions. Large-scale collaborative studies like this are increasingly common in complex disorders that have a huge impact on public health, such as cancer, heart disease, diabetes, and mental disorders.

"This work reveals a new mechanism by which cancer cells can evade normal tissue architecture, which is a hallmark of tumor development," says noted Johns Hopkins University and Howard Hughes researcher Dr. Bert Vogelstein. "While further research is needed to reveal the full impact of EphB2 on prostate cancer, every step helps when fighting this disease."

According to Mousses, complex diseases such as prostate cancer involve more than one gene - often many - and a host of environmental factors, which makes them particularly hard to investigate.

In addition to researchers at TGen, the study involved researchers from the University of Turku in Finland, the National Human Genome Research Institute in Bethesda, MD, Tampere University of Technology in Finland, the Jewish General Hospital in Montreal, Quebec, Canada, Johns Hopkins University School of Medicine in Baltimore, MD, the University of Basel in Switzerland, Tampere University Hospital in Finland, and Mount Sinai Hospital in Toronto, Ontario, Canada.

Prostate cancer is cancer of the gland that makes part of a man's seminal fluid. The prostate is located in front of the rectum and under the bladder. The disease usually progresses slowly and may not require treatment for many years, but prostate cancer was responsible for the deaths of almost 31,000 US men in 2001. It is the second-leading cause of cancer death in US men (after lung cancer.) The American Cancer Society estimates that more than 230,000 cases of prostate cancer will be diagnosed in US men in 2004; 98 percent of these men will live for at least five more years.
-end-
About TGen

Established in 2002, TGen is a not-for-profit research institute whose primary mission is to make and translate genomic discoveries into advances in human health. Translational genomics research is a relatively new field employing innovative advances arising from the Human Genome Project to apply to the development of diagnostics, prognostics and therapies for cancer, neurological disorders, diabetes and other complex diseases. For additional information, please visit the TGen web site at www.tgen.org.

The Translational Genomics Research Institute

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.