More than aiding balance, vestibular organs provide an on-line movement guidance system

August 08, 2005

Anyone who's had to find his or her way through a darkened room can appreciate that nonvisual cues play a large role in our sense of movement. What might be less apparent is that not all such cues come from our remaining four senses.

In a finding that broadens our understanding of human movement control, researchers at the Institute of Neurology in London have shown that the inner-ear vestibular organs provide what is essentially an on-line movement guidance system for maintaining the accuracy of whole-body movements.

The vestibular organs are commonly thought of as sensors that serve balance, the control of visual gaze, and higher spatial functions, such as navigation. However, because these organs respond to head movements, such as accelerations, they also have the potential to signal the accuracy of any voluntary movement that causes the head to move in space. The brain may then use that information for movement control in the same way that it uses sensory feedback information from the eyes, muscles, and skin to assess and adjust a limb movement as it is being executed.

In the new work, appearing in the August 9 issue of Current Biology, Brian Day and Raymond Reynolds of University College London show that the brain uses signals from the vestibular organs to make on-line adjustments to whole-body voluntary movements. The researchers were able to show this by precisely stimulating the vestibular sensory nerves through the skin while volunteers performed a simple upper-body movement. The researchers found that the stimulus altered the normal vestibular response to the upper-body movement and automatically caused the subjects to adjust their movement speed--and did so in a predictable way that depended on how the vestibular sensory nerves were stimulated. As one might expect when perturbing the guidance system, the effect of the nerve stimulation was only apparent in connection with body movement; the same stimulus had almost no effect when the subjects were stationary.

The authors of the study point out that this vestibular mechanism of movement control may be especially valuable when other senses become less reliable--such as in the dark--or for complex, high-precision whole-body movements, such as those of the gymnast or circus performer.
-end-
The researchers include Brian L. Day and Raymond F. Reynolds of University College London. The Medical Research Council funded this work.

Day et al.: "Vestibular reafference shapes voluntary movement" Publishing in Current Biology, Vol. 15, 1390-1394, August 9, 2005. DOI 10.1016/j.cub.2005.06.036 www.current-biology.com

Cell Press

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.