Disney Research process designs tops and yo-yos with stable spins despite asymmetric shapes

August 08, 2014

Tops and yo-yos are among the oldest types of playthings but researchers at Disney Research Zurich and ETH Zurich have given them a new spin with an algorithm that makes it easier to design these toys so that they have asymmetric shapes.

The algorithm can take a 3D model of an object and, within less than a minute, calculate how mass can be distributed within the object to enable a stable spin around a desired axis. Sometimes, adding voids within the object is sufficient to provide stability; in other cases, the object's shape might need to be altered a bit or a heavier material might be added inside.

"Our approach is effective on a wide range of models, from characters such as an elephant balancing on its toe, or an armadillo break-dancing on its shell, to abstract shapes," said Moritz Bächer, a post-doctoral researcher at Disney Research Zurich. "It's well-suited to objects that can be produced with a 3D printer, which we used to make tops and yo-yos with unusual shapes but remarkably stable spins."

The research will be presented at ACM SIGGRAPH 2014, the International Conference on Computer Graphics and Interactive Techniques in Vancouver, Aug. 10-14.

The work could have applications beyond fanciful and customized designs for spinning toys. The algorithm modifies mass within an object to optimize its "moment of inertia," a physical property that measures the resistance to rotations about a given axis.

Moment of inertia is a property fundamental to a number of mechanical systems so the algorithm may also be useful in the computational design of mechanical structures, animatronics and robotics, said Bernd Bickel, research scientist at Disney Research Zurich. By controlling inertial properties of individual parts, it may be possible to minimize a system's overall inertial resistance and thus reduce energy consumption.

Though spinning toys have existed since antiquity, new designs have always required a certain amount of trial and error, relying on the intuition and patience of artists and hobbyists. Not surprisingly, designs tend to be rotationally symmetric.

The new method measures the spinnability of a shape on an axis specified by the user. It then optimizes spin by counterbalancing asymmetric mass distribution and placing the center of mass as low on the rotation axis as possible. For many shapes, simply hollowing out certain areas is sufficient to improve spin quality; in other cases, the method can make changes in the external shape, as well as the internal voids.

If changing the shape is not acceptable, the method also can incorporate heavier materials inside the object. When the object is produced with a 3D printer, as the researchers did in making proof-of-principle tops and yo-yos, the use of heavier materials requires an additional fabrication step.

The approach also can be adapted to the design of non-spinning, statically balanced objects.
In addition to Bächer and Bickel, the research team included Olga Sorkine-Hornung, assistant professor of computer science, and Emily Whiting, a post-doctoral researcher, both at ETH Zurich.

This work was supported in part by the European Research Council.

More information, including a video, is available on the project web site at http://www.disneyresearch.com/project/spin-it/.

About Disney Research

Disney Research is a network of research laboratories supporting The Walt Disney Company. Its purpose is to pursue scientific and technological innovation to advance the company's broad media and entertainment efforts. Vice Presidents Jessica Hodgins and Markus Gross manage Disney Research facilities in Los Angeles, Pittsburgh, Zürich, and Boston and work closely with the Pixar and ILM research groups in the San Francisco Bay Area. Research topics include computer graphics, animation, video processing, computer vision, robotics, wireless & mobile computing, human-computer interaction, displays, behavioral economics, and machine learning.

Disney Research

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.