Water's reaction with metal oxides opens doors for researchers

August 08, 2014

MADISON, Wis. -- A multi-institutional team has resolved a long-unanswered question about how two of the world's most common substances interact.

In a paper published recently in the journal Nature Communications, Manos Mavrikakis, professor of chemical and biological engineering at the University of Wisconsin-Madison, and his collaborators report fundamental discoveries about how water reacts with metal oxides. The paper opens doors for greater understanding and control of chemical reactions in fields ranging from catalysis to geochemistry and atmospheric chemistry.

"These metal oxide materials are everywhere, and water is everywhere," Mavrikakis says. "It would be nice to see how something so abundant as water interacts with materials that are accelerating chemical reactions."

These reactions play a huge role in the catalysis-driven creation of common chemical platforms such as methanol, which is produced on the order of 10 million tons per year as raw material for chemicals production and for uses like fuel. "Ninety percent of all catalytic processes use metal oxides as a support," Mavrikakis says. "Therefore, all of the reactions including water as an impurity or reactant or product would be affected by the insights developed."

Chemists understand how water interacts with many non-oxide metals, which are very homogeneous. Metal oxides are trickier: an occasional oxygen atom is missing, causing what Mavrikakis calls "oxygen defects." When water meets with one of those defects, it forms two adjacent hydroxyls -- a stable compound comprised of one oxygen atom and one hydrogen atom.

Mavrikakis, assistant scientist Guowen Peng and Ph.D. student Carrie Farberow, along with researchers at Aarhus University in Denmark and Lund University in Sweden, investigated how hydroxyls affect water molecules around them, and how that differs from water molecules contacting a pristine metal oxide surface.

The Aarhus researchers generated data on the reactions using scanning tunneling microscopy (STM). The Wisconsin researchers then subjected the STM images to quantum mechanical analysis that decoded the resulting chemical structures, defining which atom is which. "If you don't have the component of the work that we provided, there is no way that you can tell from STM alone what the atomic-scale structure of the water is when absorbed on various surfaces" Mavrikakis says.

The project yielded two dramatically different pictures of water-metal oxide reactions.

"On a smooth surface, you form amorphous networks of water molecules, whereas on a hydroxylated surface, there are much more structured, well-ordered domains of water molecules," Mavrikakis says.

In the latter case, the researchers realized that hydroxyl behaves as a sort of anchor, setting the template for a tidy hexameric ring of water molecules attracted to the metal's surface.

Mavrikakis' next step is to examine how these differing structures react with other molecules, and to use the research to improve catalysis. He sees many possibilities outside his own field.

"Maybe others might be inspired and look at the geochemistry or atmospheric chemistry implications, such as how these water cluster structures on atmospheric dust nanoparticles could affect cloud formation, rain and acid rain," Mavrikakis says.

Other researchers might also look at whether other molecules exhibit similar behavior when they come into contact with metal oxides, he adds.

"It opens the doors to using hydrogen bonds to make surfaces hydrophilic, or attracted to water, and to (template) these surfaces for the selective absorption of other molecules possessing fundamental similarities to water," Mavrikakis says. "Because catalysis is at the heart of engineering chemical reactions, this is also very fundamental for atomic-scale chemical reaction engineering."

While the research fills part of the foundation of chemistry, it also owes a great deal to state-of-the-art research technology.

"The size and nature of the calculations we had to do probably were not feasible until maybe four or five years ago, and the spatial and temporal resolution of scanning tunneling microscopy was not there," Mavrikakis says. "So it's advances in the methods that allow for this new information to be born."
-end-
Funding from the U.S. Department of Energy, Office of Basic Energy Sciences, and the Air Force Office of Scientific Research supported the UW research. Co-authors of the paper include Lindsay R. Merte of Aarhus and Lund and Aarhus researchers Ralf Bechstein, Felix Reiboldt, Helene Zeuthen, Jan Knudsen, Erik Laegsgaard, Stefan Wendt and Flemming Besenbacher.

Scott Gordon
gordon@engr.wisc.edu
608-265-8592

University of Wisconsin-Madison

Related Chemical Reactions Articles from Brightsurf:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.

Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.

Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.

Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.

First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.

Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.

Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Read More: Chemical Reactions News and Chemical Reactions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.