Nav: Home

Beneficial role clarified for brain protein associated with mad cow disease

August 08, 2016

Scientists have clarified details in understanding the beneficial function of a type of protein normally associated with prion diseases of the brain, such as bovine spongiform encephalopathy (commonly known as mad cow disease) and its human counterpart, variant Creutzfeldt-Jakob disease.

Studying mice and zebrafish, researchers from Washington University School of Medicine in St. Louis and the University of Zurich have shown that the proteins -- when properly folded -- play a vital role in nerve cell function by maintaining the insulation around axons, the nervous system's electrical "wiring."

The study appears August 8 in the journal Nature.

Improperly formed prion proteins that cause disease are infectious because they hijack their neighbors, resulting in misfolded proteins and setting off a domino effect that spreads through the brain destroying tissue. Although the role of prion proteins in these fatal brain diseases is well-known, scientists have long puzzled over the normal function of the protein, called PrPC.

"Previous studies have suggested a role for prion proteins in maintaining neurons, but until now, no one knew how the properly folded versions of the proteins function," said co-author Kelly R. Monk, PhD, an associate professor of developmental biology at Washington University. "It's surprising to see that the protein has a role in maintaining the structure of nerve cells, considering that a misfolded version of PrPC is known to cause fatal brain diseases."

Past work by the researchers at the University of Zurich demonstrated that mice lacking PrPC had disruptions in the insulation surrounding axons, but the reasons for the disruptions were unclear. The new study demonstrates that PrPC binds to Schwann cells, which are cells that provide support for the brain's neurons. Schwann cells produce the nerve-insulating protein called myelin and then wrap this insulation around the long, thin axons. Properly insulated axons enable the rapid propagation of nerve signals. Specifically, PrPC binds to a docking site on Schwann cells called Gpr126.

In past work, Monk and her Washington University colleagues demonstrated that the docking site on cells played an important role in nerve formation during embryonic development in zebrafish and in mice. But the new study identifies roles for both Gpr126 and PrPC in maintaining the integrity of neurons through adulthood.

When either of these components is missing, Monk said mice experience a gradual loss of interactions between Schwann cells and axons, with a resulting loss of of myelin. Without this important insulation, walking progressively becomes more difficult for mice, and they eventually reach a state of paralysis.

"We have identified a definitive function for the normal prion protein and clarified how it works on a molecular level," said senior author Adriano Aguzzi, MD, PhD, of the University of Zurich. "Our study answers a question that has been intensely researched since the prion gene's discovery in 1985."

The researchers said the findings may have implications for understanding and eventually treating nerve disorders that result from the loss of the insulating myelin sheaths, such as Charcot-Marie-Tooth disease and other devastating peripheral neuropathies.
-end-
This work was supported by the European Research Council; a European Union Framework 7 Grant (NEURINOX); the Swiss National Foundation; the Clinical Research Priority Programs "Small RNAs" and "Human Hemato-Lymphatic Diseases;" SystemsX.ch; the Novartis Research Foundation; the Swiss National Science Foundation; the Synapsis Foundation; and the National Institutes of Health (NIH), grant numbers F32 NS087786 and NS079445.

Kuffer A, Lakkaraju AKK, Mogha A, Petersen SC, Airich K, Doucerain C, Marpakwar R, Bakirci P, Senatore A, Monnard A, Schiavi C, Nuvolone M, Grosshans B, Hornemann S, Bassilana F, Monk KR, Aguzzi A. The prion protein is an agonistic ligand for the G protein-coupled receptor Gpr126/Adgrg6. Nature. August 8, 2016.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Washington University School of Medicine

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab