Nav: Home

UToledo chemists discover how blue light speeds blindness

August 08, 2018

Blue light from digital devices and the sun transforms vital molecules in the eye's retina into cell killers, according to optical chemistry research at The University of Toledo.

The process outlined in the study, which was recently published in the journal Scientific Reports, leads to age-related macular degeneration, a leading cause of blindness in the United States.

"We are being exposed to blue light continuously, and the eye's cornea and lens cannot block or reflect it," Dr. Ajith Karunarathne, assistant professor in the UT Department of Chemistry and Biochemistry, said. "It's no secret that blue light harms our vision by damaging the eye's retina. Our experiments explain how this happens, and we hope this leads to therapies that slow macular degeneration, such as a new kind of eye drop."

Macular degeneration, an incurable eye disease that results in significant vision loss starting on average in a person's 50s or 60s, is the death of photoreceptor cells in the retina. Those cells need molecules called retinal to sense light and trigger a cascade of signaling to the brain.

"You need a continuous supply of retinal molecules if you want to see," Karunarathne said. "Photoreceptors are useless without retinal, which is produced in the eye."

Karunarathne's lab found that blue light exposure causes retinal to trigger reactions that generate poisonous chemical molecules in photoreceptor cells.

"It's toxic. If you shine blue light on retinal, the retinal kills photoreceptor cells as the signaling molecule on the membrane dissolves," Kasun Ratnayake, a PhD student researcher working in Karunarathne's cellular photo chemistry group, said. "Photoreceptor cells do not regenerate in the eye. When they're dead, they're dead for good."

Karunarathne introduced retinal molecules to other cell types in the body, such as cancer cells, heart cells and neurons. When exposed to blue light, these cell types died as a result of the combination with retinal. Blue light alone or retinal without blue light had no effect on cells.

"No activity is sparked with green, yellow or red light," Karunarathne said. "The retinal-generated toxicity by blue light is universal. It can kill any cell type."

The researcher found that a molecule called alpha tocoferol, a Vitamin E derivative and a natural antioxidant in the eye and body, stops the cells from dying. However, as a person ages or the immune system is suppressed, people lose the ability to fight against the attack by retinal and blue light.

"That is when the real damage occurs," Karunarathne said. The lab currently is measuring light coming from television, cell phone and tablet screens to get a better understanding of how the cells in the eyes respond to everyday blue light exposure.

"If you look at the amount of light coming out of your cell phone, it's not great but it seems tolerable," Dr. John Payton, visiting assistant professor in the UT Department of Chemistry and Biochemistry, said. "Some cell phone companies are adding blue-light filters to the screens, and I think that is a good idea."

To protect your eyes from blue light, Karunarathne advises to wear sunglasses that can filter both UV and blue light outside and avoid looking at your cell phones or tablets in the dark.

"Every year more than two million new cases of age-related macular degeneration are reported in the United States," Karunarathne said. "By learning more about the mechanisms of blindness in search of a method to intercept toxic reactions caused by the combination of retinal and blue light, we hope to find a way to protect the vision of children growing up in a high-tech world."
-end-


University of Toledo

Related Macular Degeneration Articles:

Dietary and lifestyle recommendations for patients at risk of macular degeneration
Age-related macular degeneration (AMD) is a major cause of severe visual impairment in older populations and is characterized by progressive destruction of the retinal pigment epithelial cells and photoreceptors due to low-grade inflammation, ischemia and oxidative stress.
Penn team characterizes the underlying cause of a form of macular degeneration
Using an animal model of Best disease in combination with biochemical and optical assays, a team of researchers at the University of Pennsylvania has pinpointed a number of abnormalities that give rise to the impairments seen in the blinding disease.
Communication from doctors could reduce anxiety for macular degeneration patients
Highly effective current treatments for vision loss need to be allied with careful counselling to ensure patients maintain good psychological health as well as good vision, new research recommends.
Assessing the impact of stress in age-related macular degeneration
Age-related macular degeneration (AMD), the leading cause of vision loss among older adults in the United States, is often associated with psychological stress.
Genetic mutations that lead to macular degeneration blindness mapped by new research
Two gene mutations that trigger a retinal disease that causes blindness in one in 5,000 males have been mapped, leading to the potential for new therapeutic treatments.
Clinical trial tests cord tissue to treat macular degeneration
UIC is part of a national phase 2 clinical trial to evaluate the safety and tolerability of using cells derived from multipotent umbilical cord cells to treat age-related macular degeneration, the most common cause of vision loss in people over 55.
Macular degeneration insight identifies promising drugs to prevent vision loss
In a study published this week in the Proceedings of the National Academy of Sciences, a University of Wisconsin-Madison research team pinpoints how immune abnormalities beneath the retina result in macular degeneration, a common condition that often causes blindness.
BrightFocus Foundation honors 5 researchers on macular degeneration and glaucoma
BrightFocus Foundation today recognized five scientists in the fields of macular degeneration and glaucoma research, awarding them grants named in honor of leaders in vision research and advocacy.
Age-related macular degeneration before and after the era of anti-VEGF drugs
In a study of nearly 650 people with the eye disease age-related macular degeneration (AMD), half still had vision 20/40 or better, typically good enough to drive or to read standard print, after five years of treatment with anti-VEGF drugs that are injected into the eye.
Discovery identifies new RX target for age-rleated macular degeneration & Alzheimer's
For the first time, researchers at LSU Health New Orleans have shown that a protein critical to the body's ability to remove waste products from the brain and retina is diminished in age-related macular degeneration, after first making the discovery in an Alzheimer's disease brain.

Related Macular Degeneration Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".