Nav: Home

Anticancer drugs delivered by a new drug delivery system reduce tumor size

August 08, 2018

Cancer tissue cells are divided into two major groups: cancer cells and cancer stem cells (CSCs). CSCs are related to cancer progression and dissemination, so it's necessary to eradicate CSCs in order to cure cancer. However, because CSCs are resistant to chemotherapy and radiotherapy, cancer is refractory.

A research group from Osaka University, in collaboration with Tokyo Institute of Technology, had found that there were CD13 surface markers in hepatocellular carcinoma (HCC) stem cells. When CD13 inhibitor ubenimex is added to CSCs, HCC stem cells cause apoptosis (programmed cell death), becoming extinct. However, because CSCs only reside in part of tumor tissues, it's imperative to develop a method for delivering drugs in high concentration to target sites.

The researchers created a drug delivery system (DDS) using a poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate (PEG-b-PLys(Ube)). The use of this DDS has enabled an increase in the concentration of ubenimex in target CSCs. In addition, combined use of standard anticancer drugs significantly decreased CSCs. (Figure 1) Their research results were published in Oncogene.

Lead author Masamitsu Konno says, "First, we developed a DDS to deliver highly concentrated ubenimex and then, another DDS in which 20 ubenimex molecules were bound with poly (ethylene glycol)-poly(lysine) block copolymer conjugates."

Using this method, they performed intraperitoneal administration and intravenous injection of ubenimex in mice, finding that the tumor size was significantly reduced. (Figure 2) This shows that it has become possible to deliver ubenimex to CSCs in high concentration.

Next, the combined administration of ubenimex and existing anticancer drugs (luorouracil (5-FU), cisplatin (CDDP), and doxorubicin (DXR)) was performed, enhancing apoptosis in vitro synergistically in CSCs in mice.

Corresponding author Hideshi Ishii says, "Our research results will promote the application of drugs whose medical effects on CSCs were verified but there were challenges in their delivery to target sites, which will promote repositioning, i.e., the drugs will be used to treat different diseases. Block copolymers used in the DDS in this study can be easily produced and exhibit strong effects, allowing them to be used for the application of other drugs as well."
-end-
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.Website: http://resou.osaka-u.ac.jp/en/top

Osaka University

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...