Nav: Home

Novel approach to coherent control of a three-level quantum system

August 08, 2018

For the first time, researchers were able to study quantum interference in a three-level quantum system and thereby control the behavior of individual electron spins. To this end, they used a novel nanostructure, in which a quantum system is integrated into a nanoscale mechanical oscillator in form of a diamond cantilever. Nature Physics has published the study that was conducted at the University of Basel and the Swiss Nanoscience Institute.

The electronic spin is a fundamental quantum mechanical property intrinsic to every electron. In the quantum world, the electronic spin describes the direction of rotation of the electron around its axis which can normally occupy two so-called eigenstates commonly denoted as "up" and "down." The quantum properties of such spins offer interesting perspectives for future technologies, for example in the form of extremely precise quantum sensors.

Combining spins with mechanical oscillators

Researchers led by Professor Patrick Maletinsky and PhD candidate Arne Barfuss from the Swiss Nanoscience Institute at the University of Basel report in Nature Physics a new method to control the spins' quantum behavior through a mechanical system.

For their experimental study, they combined such a quantum system with a mechanical oscillator. More specifically, the researchers employed electrons trapped in so-called nitrogen-vacancy centers and embedded these spins in single-crystalline mechanical resonators made from diamond.

These nitrogen-vacancy spins are special, in that they possess not only two, but three eigenstates, which can be described as "up," "down" and "zero." Using the special coupling of a mechanical oscillator to the spin, they showed for the first time a complete quantum control over such a three-level system, in a way not possible before.

Controlling three quantum states

In particular, the oscillator allowed them to address all three possible transitions in the spin and to study how the resulting excitation pathways interfere with each other.

This scenario, known as "closed-contour driving," has never been investigated so far but opens interesting fundamental and practical perspectives. For example, their experiment allowed for a breaking of time-reversal symmetry, which means that the properties of the system look fundamentally different if the direction of time is reversed than without such inversion. In this scenario, the phase of the mechanical oscillator determined whether the spin circled "clockwise" (direction of rotation up, down, zero, up) or "counter-clockwise."

Extending coherence

This abstract concept has practical consequences for the fragile quantum states. Similar to the well-known Schrödinger's cat, spins can be simultaneously in a superposition of two or three of the available eigenstates for a certain period, the so-called quantum coherence time.

If the three eigenstates are coupled to each other using the closed contour driving discovered here, the coherence time can be significantly extended, as the researchers were able to show. Compared to systems where only two of the three possible transitions are driven, coherence increased almost a hundredfold.

Such coherence protection is a key element for future quantum technologies and another main result of this work.

Applications for sensor technology

The work described here holds high potential for future applications. It is conceivable that the hybrid resonator-spin system could be used for the precise measurement of time-dependent signals with frequencies in the gigahertz range - for example in quantum sensing or quantum information processing. For time-dependent signals emerging from nanoscale objects, such tasks are currently very difficult to address otherwise. Here the combination of spin and an oscillating system could provide helpful, in particular also because of the demonstrated protection of spin coherence.
-end-


University of Basel

Related Behavior Articles:

Religious devotion as predictor of behavior
'Religious Devotion and Extrinsic Religiosity Affect In-group Altruism and Out-group Hostility Oppositely in Rural Jamaica,' suggests that a sincere belief in God -- religious devotion -- is unrelated to feelings of prejudice.
Brain stimulation influences honest behavior
Researchers at the University of Zurich have identified the brain mechanism that governs decisions between honesty and self-interest.
Brain pattern flexibility and behavior
The scientists analyzed an extensive data set of brain region connectivity from the NIH-funded Human Connectome Project (HCP) which is mapping neural connections in the brain and makes its data publicly available.
Butterflies: Agonistic display or courtship behavior?
A study shows that contests of butterflies occur only as erroneous courtships between sexually active males that are unable to distinguish the sex of the other butterflies.
Sedentary behavior associated with diabetic retinopathy
In a study published online by JAMA Ophthalmology, Paul D.
Curiosity has the power to change behavior for the better
Curiosity could be an effective tool to entice people into making smarter and sometimes healthier decisions, according to research presented at the annual convention of the American Psychological Association.
Campgrounds alter jay behavior
Anyone who's gone camping has seen birds foraging for picnic crumbs, and according to new research in The Condor: Ornithological Applications, the availability of food in campgrounds significantly alters jays' behavior and may even change how they interact with other bird species.
A new tool for forecasting the behavior of the microbiome
A team of investigators from Brigham and Women's Hospital and the University of Massachusetts have developed a suite of computer algorithms that can accurately predict the behavior of the microbiome -- the vast collection of microbes living on and inside the human body.
Is risk-taking behavior contagious?
Why do we sometimes decide to take risks and other times choose to play it safe?
Neural connectivity dictates altruistic behavior
A new study suggests that the specific alignment of neural networks in the brain dictates whether a person's altruism was motivated by selfish or altruistic behavior.

Related Behavior Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".