Nav: Home

Machine learning could predict medication response in patients with complex mood disorders

August 08, 2018

LONDON, ON - Mood disorders like major depressive disorder (MDD) and bipolar disorder are often complex and hard to diagnose, especially among youth when the illness is just evolving. This can make decisions about medication difficult. In a collaborative study by Lawson Health Research Institute, The Mind Research Network and Brainnetome Center, researchers have developed an artificial intelligence (AI) algorithm that analyzes brain scans to better classify illness in patients with a complex mood disorder and help predict their response to medication.

The full study included 78 emerging adult patients from mental health programs at London Health Sciences Centre (LHSC), primarily from the First Episode Mood and Anxiety Program (FEMAP). The first part of the study involved 66 patients who had already completed treatment for a clear diagnosis of either MDD or bipolar type I (bipolar I), which is a form of bipolar disorder that features full manic episodes, as well as an additional 33 research participants with no history of mental illness. Each individual participated in scanning to examine different brain networks using Lawson's functional magnetic resonance imaging (fMRI) capabilities at St. Joseph's Health Care London.

The research team analyzed and compared the scans of those with MDD, bipolar I and no history of mental illness, and found the three groups differed in particular brain networks. These included regions in the default mode network, a set of regions thought to be important for self-reflection, as well as in the thalamus, a 'gateway' that connects multiple cortical regions and helps control arousal and alertness.

The data was used by researchers at The Mind Research Network to develop an AI algorithm that uses machine learning to examine fMRI scans to classify whether a patient has MDD or bipolar I. When tested against the research participants with a known diagnosis, the algorithm correctly classified their illness with 92.4 per cent accuracy.

The research team then performed imaging with 12 additional participants with complex mood disorders for whom a diagnosis was not clear. They used the algorithm to study a participant's brain function to predict his or her diagnosis and, more importantly, examined the participant's response to medication.

"Antidepressants are the gold standard pharmaceutical therapy for MDD while mood stabilizers are the gold standard for bipolar I," says Dr. Elizabeth Osuch, a clinician-scientist at Lawson, medical director at FEMAP and co-lead investigator on the study. "But it becomes difficult to predict which medication will work in patients with complex mood disorders when a diagnosis is not clear. Will they respond better to an antidepressant or to a mood stabilizer?"

The research team hypothesized that participants classified by the algorithm as having MDD would respond to antidepressants while those classified as having bipolar I would respond to mood stabilizers. When tested with the complex patients, 11 out of 12 responded to the medication predicted by the algorithm.

"This study takes a major step towards finding a biomarker of medication response in emerging adults with complex mood disorders," says Dr. Osuch. "It also suggests that we may one day have an objective measure of psychiatric illness through brain imaging that would make diagnosis faster, more effective and more consistent across health care providers."

Psychiatrists currently make a diagnosis based on the history and behavior of a patient. Medication decisions are based on that diagnosis. "This can be difficult with complex mood disorders and in the early course of an illness when symptoms may be less well-defined," says Dr. Osuch. "Patients may also have more than one diagnosis, such as a combination of a mood disorder and a substance abuse disorder, further complicating diagnosis. Having a biological test or procedure to identify what class of medication a patient will respond to would significantly advance the field of psychiatry."
-end-
The study, "Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients," is published online in Acta Psychiatrica Scandinavica.

Lawson Health Research Institute: As the research institute of London Health Sciences Centre and St. Joseph's Health Care London, and working in partnership with Western University, Lawson Health Research Institute is committed to furthering scientific knowledge to advance health care around the world. http://www.lawsonresearch.ca

For more information, please contact:

Robert DeLaet
Communications & External Relations
Lawson Health Research Institute
T: 519-685-8500 ext. 75664
robert.delaet@lawsonresearch.com
http://www.lawsonresearch.ca/news-events

Lawson Health Research Institute

Related Bipolar Disorder Articles:

Is bipolar disorder associated with increased risk of Parkinson's disease?
This study, called a systematic review and meta-analysis, combined the results of seven studies with 4.3 million participants to examine a potential association between bipolar disorder with a later diagnosis of Parkinson's disease of unknown cause.
Bipolar disorder may be linked to Parkinson's disease
People who have bipolar disorder may be more likely to later develop Parkinson's disease than people who do not have bipolar disorder, according at a study published in the May 22, 2019, online issue of Neurology®, the medical journal of the American Academy of Neurology.
Probiotics could help millions of patients suffering from bipolar disorder
About 3 million people in the US are diagnosed every year with bipolar disorder, a psychiatric condition characterized by dramatic shifts in mood from depression to mania.
Novel intervention for anxiety symptoms among people with Bipolar Disorder
Psychologists at Lancaster University have devised a novel psychological intervention to address Anxiety in Bipolar Disorder (AIBD).
Mutation links bipolar disorder to mitochondrial disease
Mutations in the gene ANT1 may confer a risk for bipolar disorder through a complex interplay between serotonin and mitochondrial signaling in the brain.
More Bipolar Disorder News and Bipolar Disorder Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...