Nav: Home

Harmful bacteria thrived in post-Hurricane Harvey floodwaters

August 08, 2018

Hurricane Harvey made landfall in Texas on August 25, 2017, bringing more than 50 inches of rain and extreme flooding to the city of Houston. In addition to wreaking havoc on buildings and infrastructure, urban floodwaters harbor hidden menaces in the form of bacteria that can cause disease. Now, researchers have surveyed the microbes that lurked in Houston floodwaters, both inside and outside of homes. They report their results in Environmental Science & Technology Letters.

One of the most destructive hurricanes to hit the U.S. since Katrina in 2005, Harvey damaged more than 100,000 homes in the Houston area. In addition, the storm flooded numerous wastewater treatment plants, causing widespread discharge of untreated or partially treated sewage. Raw sewage contains fecal bacteria, like E. coli, and other potential pathogens, such as Salmonella enterica and Clostridium perfringens. Also, bacteria in sewage can possess elevated levels of antibiotic-resistance genes, which they can share with other microbes in the environment. Few studies have examined pathogenic bacterial exposures and antibiotic resistance in residential communities affected by urban floodwaters. So, Lauren Stadler and her colleagues wanted to survey the bacteria in post-Harvey floodwaters on Houston streets, inside homes and in bayous, as well as in sediments left by the receding waters.

The researchers found that E. coli levels in two of Houston's major bayous were significantly elevated in the immediate aftermath of Harvey compared with numbers obtained before the hurricane, but gradually decreased over two months after the storm to pre-storm levels. Similarly, antibiotic-resistance gene levels were highest three days after the storm. The team next compared microbial communities in floodwaters both inside and outside homes. The highest levels of fecal bacteria, human pathogens and antibiotic resistance genes occurred in homes with stagnant floodwater inside. When Stadler and coworkers analyzed sediment samples from public parks and residential communities, they detected abundant possible pathogens, but they were different from the pathogens found in flood and bayou waters. The study indicates that residents and relief workers should exercise caution to prevent coming into contact with harmful microbes in the aftermath of extreme floods, especially in stagnant indoor waters, the researchers say.
-end-
The authors acknowledge funding from the National Science Foundation.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C, and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
A chink in bacteria's armor
Scientists have untangled the structure of a recently discovered bacterial wall-building protein, found in nearly all bacteria.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.