Drug identified that could reverse pulmonary arterial hypertension

August 08, 2018

Scientists at Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago took a major step toward developing a new treatment for pulmonary arterial hypertension (PAH), a severe lung disease with a five-year survival rate of 50 percent. They identified a drug with a positive safety profile that inhibits a gene called HIF-2α, which they discovered earlier promotes the progressive thickening of the lung artery walls - a key feature of PAH called "vascular remodeling," which leads to right-sided heart failure, the main cause of death in PAH patients. Recently, they demonstrated in three clinically-relevant animal models that inhibiting HIF-2α with a compound results in reversal of established PAH, suppression of vascular remodeling and right heart failure, and increased survival. These findings were published in the American Journal of Respiratory Critical Care Medicine.

"We are thrilled to reach this critical stage in developing the first drug for pulmonary arterial hypertension that targets the mechanisms behind disease development," says lead author Zhiyu Dai, PhD, from the Manne Research Institute at Lurie Children's, who also is a Research Assistant Professor of Pediatrics at Northwestern University Feinberg School of Medicine. "We plan to complete preclinical testing of the new drug by the end of 2018 and launch a clinical trial in 2019."

In PAH, vascular remodeling causes high blood pressure in the lung arteries, interferes with the smooth flow of blood from the heart and ultimately results in right heart damage. In severe cases, the pulmonary arteries become completely blocked, leading to right heart failure and death. Currently, there is no effective therapy to reverse vascular remodeling and inhibit right heart failure in PAH. Available treatments mainly target vasoconstriction, or contraction of the lung arteries, achieving only modest improvements in PAH morbidity and mortality.

"It is exciting to see our research progressing from the bench to the bedside," says senior author and program director Youyang Zhao, PhD, from the Manne Research Institute at Lurie Children's and Professor of Pediatrics, Medicine and Pharmacology at Northwestern University Feinberg School of Medicine. "We started with creating a unique genetically modified mouse model that is the first to mimic how pulmonary arterial hypertension develops in patients. This helped us establish the potentially therapeutic benefits of inhibiting HIF-2α and the feasibility of doing this with a compound. Now we have a promising drug that we know is safe to test in a clinical trial. We are hopeful that it can reverse vascular remodeling in patients with this devastating disease and ultimately save lives."
-end-
This research is supported in part by grants from the National Institutes of Health.

Dr. Zhao is the William G. Swartchild, Jr. Distinguished Research Professor and Director of the Program for Lung and Vascular Biology at the Manne Research Institute.

Research at Ann & Robert H. Lurie Children's Hospital of Chicago is conducted through the Stanley Manne Children's Research Institute. The Manne Research Institute is focused on improving child health, transforming pediatric medicine and ensuring healthier futures through the relentless pursuit of knowledge. Lurie Children's is ranked as one of the nation's top children's hospitals in the U.S.News & World Report. It is the pediatric training ground for Northwestern University Feinberg School of Medicine. Last year, the hospital served more than 208,000 children from 50 states and 58 countries.

Ann & Robert H. Lurie Children's Hospital of Chicago

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.