Nav: Home

Human microbiome influences rotavirus vaccine response

August 08, 2018

In a proof-of-concept study in healthy adult men, scientists in the Netherlands found that microbiome manipulation with antibiotics influenced the response to oral rotavirus vaccine. Specifically, they found higher levels of viral shedding in those receiving antibiotic treatment prior to vaccination compared with controls receiving no antibiotic treatment prior to vaccination. The study is a human demonstration that altering the bacterial intestinal microbiome can affect a vaccine's immunogenicity. The results appear August 8 in the journal Cell Host & Microbe.

"We found that the weakened live virus in the vaccine replicates at a higher level in antibiotic-treated recipients," says co- first author Vanessa Harris, of the Amsterdam Institute for Global Health and Development and the Division of Infectious Diseases and Center for Experimental and Molecular Medicine at the Amsterdam Medical Center, the Netherlands. "That means more virus was shed and we know from previous research that children who have higher shedding have better protection from the vaccine."

The researchers initiated the study to see if they could corroborate that the microbiome is related to vaccine performance. "If that is so, which we believe it is, then one could potentially use the microbiome to improve vaccine performance," says Harris, whose research has focused on the potential correlation between the microbiome and oral vaccine performance.

Rotavirus kills over 200,000 children each year and is the most important cause of diarrheal death in children. Previous research has shown that vaccines protect children against the disease but that they work less well in low-income settings. The reason for this was not well understood.

Working with co-first author Bastiaan Haak, Harris initiated the 63-person study to include healthy male adults randomized into two arms of antibiotic treatment: either broad spectrum with vancomycin/ciprofloxacin/metronidazole, where all bacteria were essentially killed, or narrow-spectrum with vancomycin. A no-vaccine control arm was also included. After antibiotic treatment and vaccination, subjects were assessed for antibody response and viral shedding. No differences were found in antibody levels between the three treatment arms except a slight increase in early vaccine boosting in the narrow-spectrum arm, but higher viral shedding was noted in the antibiotic-treated groups compared with the control arm.

In the team's earlier field work in children in Ghana and Pakistan, they found that infants with good immunity to the rotavirus vaccine had specific bacteria in their intestine. In this study, they added the vancomycin arm to see if they could replicate some of the microbiome findings found in those earlier field studies.

While the results from this study are limited since rotavirus is a childhood disease and the microbiome of infants and children is different in adults, the researchers are buoyed that their microbiome/vaccine response theory deserves further study.

"I think there is a fascinating interplay between the bacteria and viruses in our intestines and our intestinal immune system," says Harris. "All microbiota in the gut, including bacteria, fungi, and viruses, have evolved together for so long, it is very likely viruses exploit bacteria or immune responses in the gut to their advantage. Perhaps certain bacteria help the rotavirus replicate or antibiotics alter bacteria and thereby trigger immune responses that are favorable or unfavorable for a virus."

The team believes that understanding that triangulation between bacteria, virus, and the human immune system has potential for vaccinology and can lead to important uses of the microbiome that have not been realized to date.

Harris emphasizes that this work does not advocate for antibiotic use in infants or children to boost rotavirus responses. Instead, the researchers view these results as a starting point with great potential for altering the microbiome to improve vaccine performance and ultimately better protect children in low-income settings from rotavirus, which continues to be a life-threatening disease.
-end-
This research was funded by Emma Children's Hospital Foundation, and the Academic Medical Center, Amsterdam (Stichting Emma Foundation).

Cell Host & Microbe, Harris and Haak et al. "Effect of Antibiotic-Mediated Microbiome Modulation on Rotavirus Vaccine Immunogenicity: A Human, Randomized-Control Proof-of-Concept Trial." http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(18)30375-5 DOI: 10.1016/j.chom.2018.07.005

Cell Host & Microbe (@cellhostmicrobe), published by Cell Press, is a monthly journal that publishes novel findings and translational studies related to microbes (which include bacteria, fungi, parasites, and viruses). The unifying theme is the integrated study of microbes in conjunction and communication with each other, their host, and the cellular environment they inhabit. Visit: http://www.cell.com/cell-host-microbe. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
A chink in bacteria's armor
Scientists have untangled the structure of a recently discovered bacterial wall-building protein, found in nearly all bacteria.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.