Nav: Home

Human microbiome influences rotavirus vaccine response

August 08, 2018

In a proof-of-concept study in healthy adult men, scientists in the Netherlands found that microbiome manipulation with antibiotics influenced the response to oral rotavirus vaccine. Specifically, they found higher levels of viral shedding in those receiving antibiotic treatment prior to vaccination compared with controls receiving no antibiotic treatment prior to vaccination. The study is a human demonstration that altering the bacterial intestinal microbiome can affect a vaccine's immunogenicity. The results appear August 8 in the journal Cell Host & Microbe.

"We found that the weakened live virus in the vaccine replicates at a higher level in antibiotic-treated recipients," says co- first author Vanessa Harris, of the Amsterdam Institute for Global Health and Development and the Division of Infectious Diseases and Center for Experimental and Molecular Medicine at the Amsterdam Medical Center, the Netherlands. "That means more virus was shed and we know from previous research that children who have higher shedding have better protection from the vaccine."

The researchers initiated the study to see if they could corroborate that the microbiome is related to vaccine performance. "If that is so, which we believe it is, then one could potentially use the microbiome to improve vaccine performance," says Harris, whose research has focused on the potential correlation between the microbiome and oral vaccine performance.

Rotavirus kills over 200,000 children each year and is the most important cause of diarrheal death in children. Previous research has shown that vaccines protect children against the disease but that they work less well in low-income settings. The reason for this was not well understood.

Working with co-first author Bastiaan Haak, Harris initiated the 63-person study to include healthy male adults randomized into two arms of antibiotic treatment: either broad spectrum with vancomycin/ciprofloxacin/metronidazole, where all bacteria were essentially killed, or narrow-spectrum with vancomycin. A no-vaccine control arm was also included. After antibiotic treatment and vaccination, subjects were assessed for antibody response and viral shedding. No differences were found in antibody levels between the three treatment arms except a slight increase in early vaccine boosting in the narrow-spectrum arm, but higher viral shedding was noted in the antibiotic-treated groups compared with the control arm.

In the team's earlier field work in children in Ghana and Pakistan, they found that infants with good immunity to the rotavirus vaccine had specific bacteria in their intestine. In this study, they added the vancomycin arm to see if they could replicate some of the microbiome findings found in those earlier field studies.

While the results from this study are limited since rotavirus is a childhood disease and the microbiome of infants and children is different in adults, the researchers are buoyed that their microbiome/vaccine response theory deserves further study.

"I think there is a fascinating interplay between the bacteria and viruses in our intestines and our intestinal immune system," says Harris. "All microbiota in the gut, including bacteria, fungi, and viruses, have evolved together for so long, it is very likely viruses exploit bacteria or immune responses in the gut to their advantage. Perhaps certain bacteria help the rotavirus replicate or antibiotics alter bacteria and thereby trigger immune responses that are favorable or unfavorable for a virus."

The team believes that understanding that triangulation between bacteria, virus, and the human immune system has potential for vaccinology and can lead to important uses of the microbiome that have not been realized to date.

Harris emphasizes that this work does not advocate for antibiotic use in infants or children to boost rotavirus responses. Instead, the researchers view these results as a starting point with great potential for altering the microbiome to improve vaccine performance and ultimately better protect children in low-income settings from rotavirus, which continues to be a life-threatening disease.
-end-
This research was funded by Emma Children's Hospital Foundation, and the Academic Medical Center, Amsterdam (Stichting Emma Foundation).

Cell Host & Microbe, Harris and Haak et al. "Effect of Antibiotic-Mediated Microbiome Modulation on Rotavirus Vaccine Immunogenicity: A Human, Randomized-Control Proof-of-Concept Trial." http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(18)30375-5 DOI: 10.1016/j.chom.2018.07.005

Cell Host & Microbe (@cellhostmicrobe), published by Cell Press, is a monthly journal that publishes novel findings and translational studies related to microbes (which include bacteria, fungi, parasites, and viruses). The unifying theme is the integrated study of microbes in conjunction and communication with each other, their host, and the cellular environment they inhabit. Visit: http://www.cell.com/cell-host-microbe. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".