Nav: Home

Scientists develop a way to monitor cellular decision making

August 08, 2018

The healthy function, or disease-fueling dysfunction, of any given organ stems from the behavior, or misbehavior, of the individual cells that make up that organ.

Recent technological advances have enabled scientists to analyze the actions of cells, one at a time, but these technologies can yield only static snapshots of cellular activity. Capturing an individual cell's behavior as a process that foretells its future rather than an occurrence frozen in time has thus far eluded scientists.

Now, for the first time, researchers at Harvard Medical School, working with colleagues at the Karolinska Institutet in Sweden, have succeeded in going beyond such cellular freeze framing and managed to capture a cell's decision making as a dynamic process during which a cell determines what to do and where it's headed.

The approach, described Aug. 8 in Nature, is a mathematical model that estimates RNA velocity--the rate of RNA change over time--as a predictor of cell fate on the timescale of hours.

The ability to capture cellular intent can help scientists better analyze cell function and dysfunction in complex tissues and organs--those composed of various cell types. In addition, it could help monitor how organs develop and how they respond to a given drug or therapy at the cellular level--an insight that can help gauge the efficacy of a treatment.

Cell's Kitchen

For their predictive model, scientists captured changes in mRNA, a messenger molecule that interprets the genetic code embedded in DNA and translates these instructions for cells, in essence giving them marching orders on how much of which protein to make.

"Estimating RNA velocity--or the rate of RNA change over time--is akin to observing the cooks in a restaurant kitchen as they line up the ingredients to figure out what dishes they'll be serving up next," said Peter Kharchenko, co-senior author of the study and assistant professor of biomedical informatics at Harvard Medical School.

The scientists measured trace molecules--markers already being captured during standard single-cell analyses--but often dismissed as "noise."

These molecular markers, the scientists say, provide clues into both a cell's intent and the footprints of its past. The markers emerge at various parts of the RNA lifecycle--a process during which a cell turns genetic instructions into functioning proteins. The process occurs in five discrete steps:

  1. Transcription, during which a cell reads parts of its DNA to produce precursor messenger RNA, or pre-mRNA, in a nascent form.
  2. Splicing and other processing, during which the nascent pre-mRNA is edited into a mature mRNA molecule--the written marching orders that guide the making of functional proteins.
  3. Nuclear export, during which the genetic marching orders, written in the mature mRNA, get exported from the cell's nucleus--the vault where genetic code is kept--and into the cell cytoplasm for processing.
  4. Translation, during which the mature mRNA releases the written orders and turns them into functional proteins.
  5. Degradation, during which mRNA, having done its job, is chopped up and marked for destruction by recycling.

During this cycle, cells contain a mixture of mRNA in various stages--newly made, nascent pre-mRNA, mature mRNA and fragmented, chopped-up mRNA on its way to being recycled.

Each stage bears a different molecular trace that can provide clues about a cell's future direction and ultimate destiny, the team hypothesized.

"We reasoned that by distinguishing mRNA molecules in different stages of the life cycle, we would capture past, present and future states of individual cells," Kharchenko said.

Running to stay in place

To stay alive, a cell never stops moving. At any given moment, cells are turning up and down hundreds or thousands of genes, a process marked by different levels of mRNA expression.

Even when a cell is not trying to change its course or identity, it is in a state of equilibrium, marked by the steady production of nascent mRNA and the degradation of mature mRNA. This balancing act ensures that a cell keeps a constant amount of fully functional mRNA molecules to maintain its status quo. However, shifts in either direction--too much nascent mRNA being cranked out or too little--portend changes in cellular behavior, a telltale sign that a cell is on its way to transformation.

By measuring the ratio of mRNA in various stages of expression, the scientists were able to predict a cell's trajectory and end state--what type of cell it's trying to become.

The brain, for example, is made up of several types of nerve cells that arise from a common progenitor cell. But ultimately, adult neurons, which transmit nerve signals, have very different capabilities and functions from glia, the support cells that shield and nourish neurons.

"During this cell differentiation process, hundreds of genes get turned on or turned down, depending on what type of adult cell the progenitor cell is trying to become," Kharchenko said.

By analyzing the amount of different mRNA markers that a progenitor cell produces during this "coming of age," scientists could figure out where the cell is headed, what cell type it was going to become.

To verify the accuracy of their model, the researchers tested its predictive strength by measuring cellular markers in several datasets containing information about cells in mouse and human tissue during maturation and differentiation. Analyzing RNA profiles of individual cells, such as the progenitor cells of neurons from the human forebrain or precursors of neuroendocrine mouse cells, the team confirmed that the predicted future state of the cells accurately captured what they were trying become.

In another set of experiments, the scientists measured the predictive accuracy of the model in cellular processes other than development. The model accurately predicted the final state of mouse neurons activated in response to light.

In yet another, more complex, example, the team measured RNA velocity as a predictor of cell fate in a set of differentiating cells obtained from the hippocampi of mice, a region in the brain that houses functions such as long- and short-term memory and spatial orientation. Researchers analyzed RNA velocity in more than 18,000 individual cells using molecular markers to identify the direction and predict the ultimate fate of brain stem cells or intermediate progenitor cells. Again, the analysis confirmed that the predicted future of the cells aligned accurately with their ultimate fate.

Strikingly, the scientists observed, the RNA velocity patterns showed that many seemingly similar cells found around critical decision-making crossroads were already moving in distinctly separate directions that portend different cellular fates.

The approach could eventually help scientists glean valuable insights about a range of developmental disorders, the team said.

"RNA velocity shows in detail how neurons and other cells acquire their specific functions as the brain develops and matures," said Sten Linnarsson, co-senior author on the study and professor of molecular systems biology at the Karolinska Institutet. "We're especially excited that this new method promises to help reveal how brains normally develop, but also to provide clues as to what goes wrong in human disorders of brain development, such as schizophrenia and autism."
Other investigators included Gioele La Manno, Ruslan Saldatov, Amit Zeisel, Emilie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber, Maria Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Lars Borm, Zehua Liu, David van Bruggen, Jimin Guo, Erik Sundström, Gonçalo Castelo-Branco, Patrick Cramer, and Igor Adameyko.

Support for this work was provided by the following: the Swedish Foundation for Strategic Research (RIF14-0057 and SB16-0065), the Knut and Alice Wallenberg Foundation (2015.0041), the Erling-Persson Foundation (HumDevCellAtlas) the Wellcome Trust (108726/Z/15/Z), the Center for Innovative Medicine, the Swedish Research Council, European Research Council (EPIScOPE), Swedish Brain Foundation, Ming Wai Lau Centre for Reparative Medicine, Swedish Cancer Society (Cancerfonden), Karolinska Institutet, the National Heart, Lung, and Blood Institute grant R01HL131768, and the CAREER (NSF-14-532) award from the National Science Foundation.

Harvard Medical School

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".