Nav: Home

Graphite intercalation compounds may offer keys to prolonging battery life

August 08, 2019

The beginning of this project dates back to 2012-2013, when team leader Ayrat Dimiev was working at Rice University, Houston, TX, USA, with Professor James Tour. Together with Natnael Behabtu, at that time a PhD student of Professor Matteo Pasquali, they discovered a phenomenon that could be observed in optical microscope during the stage transitions in graphite intercalation compounds. It took Dr. Dimiev six years of further research, including additional experiments at Kazan Federal University, to fully comprehend the driving forces behind the observed phenomena. The experiments were conducted with participation from PhD graduate Ksenia Shukhina. An important breakthrough came from the use of a new unique equipment, manufactured by the Belarusian company SOL Instruments, that allowed ultrafast Raman mapping of the graphite surface during the stage transitions.

Graphite intercalation compounds (GICs) are formed by insertion of certain atomic and molecular species between the graphene layers of graphite. The resulting compounds possess a range of unique properties, which are not specific for the parent materials. Among the most intriguing properties of GIC is its superconductivity, a discovery that triggered much interest. Depending on the electrochemical potential of the intercalant, and the respective charge on the graphene layers, graphite forms structures where one, two or more graphene layers are sandwiched between the two layers of intercalant. The resulting compounds are referred to as stage-1, stage-2, and stage-3 GICs, respectively. Despite intensive and long-lasting research on GICs, the mechanism of the stage transitions remains obscure.

In this study, authors used optical and Raman microscopy to perform direct real time monitoring of stage transitions in H2SO4-GIC made from highly oriented pyrolytic graphite (HOPG). They observed that stage transitions in HOPG-based GIC occur very differently from those in GIC made from the natural flake graphite. During the stage-2 to stage-1 transition, formation of the stage-2 phase begins nearly simultaneously over the entire graphite surface that is exposed to the media. This was attributed to the movement of the small intercalant portions toward the points of attraction, thus growing continuous islands. However, during the reverse process, the stage-1 to stage-2 transition begins strictly from the edges of the graphite sample and propagates toward its center. The most striking observation was that the deintercalation front was discontinuous; namely, the selected micrometer-sized domains of the graphite surface deintercalate preferentially to release the strain that had been induced by the intercalation. The intercalant dynamics in the 2D graphite galleries, occurring at the speed of >240 μm/s, has fast kinetics. The initial intercalation process is different from the rest of the reintercalation cycles. The difference in the mechanisms of the stage transitions in natural flake graphite-based GICs and in the HOPG-based GICs exemplifies the role of the graphite structure for the intercalant dynamics in 2D graphite galleries.

The findings made in this study advance the field of graphene and have several potential applications. GICs can be considered as stacks of doped graphene which can be easily prepared by fully reversible reactions; the doping level can be easily controlled by the reaction conditions. Secondly, intercalation weakens the adhesive forces between the adjacent graphene layers, thus, GICs serve as precursors for obtaining single-layer graphene and graphene nanoplatelets via liquid phase exfoliation. Third, GICs serve as important and unavoidable intermediates en route to covalent functionalization of graphene due to the charged condition of carbon atoms. Finally and most importantly, Li-ion battery operation is based on the cyclic intercalation-deintercalation of lithium ions with graphite. Understanding the stage transition mechanism will help in advancing all these applications.

Ayrat Dimiev concludes, "The studied stage transitions in the H2SO4-GICs are accompanied by the transfer of protons to and from the intercalated sulfuric acid that occurs by the Grotthuss mechanism, i.e. it is ultrafast and "frictionless". We are thinking of checking if that is true. If yes, these systems can be used as proton conductors in the hydrogen fuel cells. Another direction is developing an efficient and high-throughput procedure for the liquid phase exfoliation of graphite to mono-layer graphene."
-end-


Kazan Federal University

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.