Control theory: Mother nature is an engineer

August 08, 2019

In the last 150 years, engineers have developed and mastered ways to stabilize dynamic systems, without lag or overshoot, using what's known as control theory. Now, a team of University of Arizona researchers has shown that cells and organisms evolved complex biochemical circuits that follow the principles of control theory, millions of years before the first engineer put pencil to paper.

Consider your home air conditioner, for example. You set the temperature to 82 degrees and leave for work. When you return after a long, hot day, you set the temperature to 72 degrees. Your air conditioner then blasts cold air into your home until the thermostat reaches 72. This is an analog for what's called feedforward control - your thermostat sets a goal, gets as close to 72 degrees as fast as it can, and turns off when it meets the goal.

The remainder of the evening, your air conditioner senses when the temperature deviates from 72 and turns on in small bursts to maintain a stable temperature. This is an analog for a feedback control, where small fluctuations away from the set temperature feedback onto the controller and cause the system to adjust.

A UA team discovered that the coupling of two interconnected biochemical circuits within a cell - the TOR and PKA pathways - work like a thermostat to control the growth of cells in response to the availability of nutrients. For decades, it has been known that mutations in both PKA and TOR cause disease; The new research found that each pathway has its own distinct role and teased out exactly how and why the two pathways work together.

The study, published today in Nature Communications, was led by associate professor of molecular and cellular biology and BIO5 Institute member Andrew Capaldi. He and his team wanted to know, if TOR and PKA both activate genes that cause cells to grow and turn on and off in response to nutrients, then why does the cell need both pathways to control growth?

Cells are constantly adapting to what's available in their environment. They discovered that when a cell has a steady availability of nutrients, the TOR pathway makes sure the cell chugs along at an appropriate (matched) pace. But when a cell suddenly gets rich in a certain nutrient, the PKA pathway shifts into gear and triggers a 25-fold increase in gene production before turning itself off and letting the far more precise TOR controller take over again. Without PKA, TOR's response to the influx of nutrients would lag.

"If you just have the TOR pathway, you'd always replicate at a good pace. The problem would be that when the conditions change, it would take a cell hours to adjust its growth rate. So nature added PKA," Capaldi said. When you run out of nutrient, PKA can also quickly shut things down to let TOR take over again. "What's happening is you have two controls - one whose job it is to speed up the response, and the other to keep it exactly right."

Chemical engineers use the same principle to tightly control temperature.

"Often, chemicals must maintain a certain temperature or you'll end up with unwanted side reactions. So, engineers include a thermostat inside the chemical mixing chamber," Capaldi said. "Let's say the next stage of a reaction is going to create a ton of heat. They use a feedforward control like PKA to quickly adjust the temperature, and then feedback control takes over to keep it steady like TOR."

Because cells must be incredibly precise, cellular pathways are numerous and complex.

"Our cells have 30,000 proteins, and biologists have shown that if there's anything wrong in one of a few thousand that control growth, then you can get a disease," Capaldi said. "That is because these pathways do not work as simple on-and-off switches. As we have shown in our new study, they act like complex circuits, even computers."

In fact, like computers, signaling networks have what are called hubs. The TOR and PKA pathways act as hubs because they are highly connected to each other, as well as hundreds of other proteins and pathways in the cell. As a result, when either of these hubs get broken the whole system goes down, just as we find with the internet.

For example, an underproductive TOR can result in clinical depression. Overactive TOR results in epilepsy, and overactive TOR or PKA results in cancer.

"The most important take-home message is to think about all the different pathways in a cell in this way - that is, think about how pathways work together to provide precise control. We won't be able to design truly effective drugs until we do," he said.

"I want our research to continue along the same theme," Capaldi added. "We'll keep trying to figure out how different pieces of the growth-control network work together. There are hundreds and hundreds of signaling pathways that are interconnected, but we still don't know how or why they talk to each other. There is just so much we still have to learn."

University of Arizona

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to