Nav: Home

Plants discriminate between self and non self

August 09, 2005

Two peas in a pod may not be so friendly when planted in the ground and even two parts of the same plant, once separated may treat the former conjoined twin as an alien "enemy," according to a Penn State researcher.

"We were looking at how plants determine who is a competitor when competing with other roots for limited resources," says Dr. Omer Falik, postdoctoral researcher in plant ecology. "There is no reason for roots to fight if they belong to the same plant."

The question was, do plants recognize their own roots and avoid competing with them and how do they do this? Working with common garden peas, Falik worked with Dr. Ariel Novoplansky at Ben Gurion University of the Negev, Israel. The researchers used plants that had two roots and planted them in a chamber that forced them to grow a specified distance from each other and from roots of a neighboring plant.

"We found that the roots grew significantly more and longer secondary roots on the non-self side," Falik told attendees at the 90th Annual Meeting of the Ecological Society of America today (Aug 8) in Montreal, Canada.

The mechanism for this self/non-self discrimination could be based on either individually specific chemical recognition - such as that known from plant reproductive systems -- or physiological coordination between roots that belong to the same plant. To test this, the researchers used plants that had two roots and two shoots and split them into two separate plants that were genetically identical, but physiologically separated. The plants acted as if their separated twin was a non-self plant, even though genetically it was identical. "This eliminated the possibility that the mechanism was based on specific chemical recognition," says Falik. "The results prove that at least in the studied plants, self/non-self root discrimination is based on physiological coordination between roots belonging to the same plant. Such coordination might be based on internal pulsing of hormonal or electrical signals which desynchronize when the plants are separated."

Falik is currently working with Dr. David Eissenstat, professor of woody plant physiology and Dr. Roger Koide, professor of horticultural ecology on examining how the latitude of a plants origin affects the respiratory responses of plant roots and mycorrhizal fungi to soil temperatures.
-end-


Penn State

Related Plants Articles:

Plants might be helping each other more than thought
Contrary to the long-held belief that plants in the natural world are always in competition, new research has found that in harsh environments mature plants help smaller ones -- and thrive as a result.
Not all plants are good for you
A new scientific review highlights a significant global health issue related to plants that sicken or kill undernourished people around the world, including those who depend upon these plants for sustenance.
How plants react to fungi
Using special receptors, plants recognize when they are at risk of fungal infection.
Flame retardants -- from plants
Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Plants are also stressed out
What will a three-degree-warmer world look like? When experiencing stress or damage from various sources, plants use chloroplast-to-nucleus communication to regulate gene expression and help them cope.
How plants defend themselves
Like humans and animals, plants defend themselves against pathogens with the help of their immune system.
An easier way to engineer plants
MIT researchers have developed a genetic tool that could make it easier to engineer plants that can survive drought or resist fungal infections.
Plants can smell, now researchers know how
Plants don't need noses to smell. The ability is in their genes.
Plants as antifungal factories
Researchers from three research institutes in Spain have developed a biotechnological tool to produce, in a very efficient manner, antifungal proteins in the leaves of the plant Nicotiana benthamiana.
More Plants News and Plants Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.