Nav: Home

The long hunted sterile neutrino cannot be traced

August 09, 2016

Some of the most abundant particles in the universe are the so-called ghost particles, neutrinos, which travel through virtually anything on their journey through the universe. Researchers have identified three types of neutrinos, but they have been searching for one more type, an even more ghostlike sterile neutrino, which would explain mysterious phenomena like dark matter. After analysing thousands of neutrinos in the IceCube Neutrino Observatory at the South Pole, researchers from the Niels Bohr Institute can now confirm that there is no evidence for the existence of sterile neutrinos. The results are published in the scientific journal, Physical Review Letters.

Neutrinos are a type of particles called 'ghost particles', because they hardly ever interact with matter, passing undisturbed through everything in their path through the universe. Neutrinos are very light particles and for many years it was believed that they were completely massless, but we now believe that they each have a specific mass, though it is extremely small - less than one millionth of the mass of an electron.

Changeable neutrinos

When particles (protons) with high energy - from violent events in the cosmos, for example supernovae, which are exploding stars and quasars, which are active black holes - hit the Earth's atmosphere, a shower of particles is created, including neutrinos. The particles interact with matter and are stopped by the Earth, while the neutrinos do not interact and therefore pass straight through the Earth.

The neutrinos that are created when high-energy particles hit the Earth's atmosphere consist of two types: muon and electron neutrinos. But neutrinos are constantly changing from one type to another. When they travel the 13,000 km through the Earth, they undergo quantum fluctuations and change into three types along the way: muon, electron and tau neutrinos.

But researchers are looking for a fourth type of neutrino, a sterile neutrino. In experiments around the world, there have been indications of such a fourth type of neutrino. A sterile neutrino may have different properties, including only interacting by means of gravity.

"One or more types of sterile neutrinos could help solve a number of mysteries, such as why there is more matter than antimatter in the universe. A sterile neutrino could provide an explanation for this imbalance, which currently cannot be explained by the three known neutrinos. A sterile neutrino with gravity could also shed light on the mysterious dark matter," explains Jason Koskinen, assistant professor at the Niels Bohr Institute at the University of Copenhagen.

Detecting neutrinos

The neutrinos that are formed over the North Pole travel straight through the Earth and a minute proportion of them hit the ice at the South Pole, where the collisions are recorded in the IceCube detector, which consists of 5,160 light sensors that are frozen deep in Antarctica's extremely clear ice.

"We have analysed hundreds of thousands of neutrinos, which after having passed through the Earth from the Northern Hemisphere have hit the ice on the South Pole, where the collisions have been recorded in the IceCube detector. We know of three neutrino types and our international team of researchers has been looking for signals from a fourth neutrino type, the so-called sterile neutrinos. For years, there has been a global mystery about the existence of a sterile neutrino with a mass of about 1 eV. If it existed, it would produce a clear signal at a certain energy interval, but we have not seen a single signal that could come from such a sterile neutrino," explains Jason Koskinen, assistant professor and group leader in the IceCube research group at the Niels Bohr Institute and team chairman of the IceCube international research team on neutrino oscillations.

The theory has been that this particular sterile neutrino with a mass of about 1 eV could also be formed during the quantum fluctuations that constantly cause the neutrinos to change between being myon, electron and tau neutrinos. If there was such a fourth option for conversion, it should be detectable in the IceCube detector - even if they could not be directly detected.

Jason Koskinen explains that when they cannot demonstrate the possibility of the sterile neutrinos it is done by a method of elimination. They know how many neutrinos are formed in the atmosphere from measurements in the Northern Hemisphere. In the Southern Hemisphere, the IceCube detector can detect the neutrinos when they have passed through the Earth.

"We can detect the quantity of muon, electron and tau neutrinos and is simply nothing 'missing' in the equation, so the conclusion is that the IceCube results weaken the possibility that this particular fourth neutrino exists," says Jason Koskinen.

Jason Koskinen, Assistant Professor in the IceCube research group at the Niels Bohr Institute, University of Copenhagen, +45 2128-9061,

Morten Medici, PhD student in the IceCube research group at the Niels Bohr Institute, University of Copenhagen, +45 3532-5454, mobile: +45 6151-6454,

University of Copenhagen - Niels Bohr Institute

Related Dark Matter Articles:

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.