Nav: Home

Cement design should take into account the water confined in the smallest pores

August 09, 2016

As it is a basic building material used across the world, cement is subjected to a vast range of conditions, both physiological and meteorological, no matter whether they are caused by extreme temperatures and humidity, pressure, etc. It is possible to find conditions ranging from -80 ºC, in places such as the scientific bases in the Antarctic, to several hundreds of degrees in infrastructures close to heat sources or in the case of fires, for example.

These variations in humidity and temperature are translated into physical processes involving evaporation or freezing of the water contained in the cement paste, which often cause stresses and even micro-cracking inside the cement. Characterizing the response to these phenomena affecting the confined water in the smallest pores of the cement "is hugely important as a large proportion of the water, about 30 %, is located in these small spaces, so to a great extent it contributes towards the final properties of the material," explained Hegoi Manzano, a researcher in the UPV/EHU's department of Condensed Matter Physics, and author of the study in collaboration with a research group of the University of Tohoku in Japan.

Given the complexity involved in studying the behaviour of the water located in such tiny pores of approximately 1 nanometre in size by means of experimental channels, the researchers resorted to molecular simulation methods that "imitate" the interactions among the atoms that make up the cement in order to determine how they behave as a whole and the properties that these interactions are translated into," he explained. The temperature range they studied was from -170 ºC to 300 ºC.

Stresses at both extremes

In the results obtained in the simulations they were able to observe that at both extremes of temperature "significant volume changes owing to water physics take place. Through totally opposite effects we arrived at the same consequences", he remarked. At high temperatures the water evaporates and disappears from the pores. In these conditions the pressure brought to bear by the material itself may cause the empty pores to collapse and micro cracking to be created which, in particularly serious cases, could cause the material to collapse.

At the other extreme, at extremely low temperatures, what happens is that the water freezes and therefore expands. "In these conditions it should be highlighted that the frozen water does not manage to form ice because of the small space in which it is located; the water molecules cannot order themselves to form a crystalline ice structure," he stressed. But the expansion it undergoes is enough to create stresses in the cement and likewise cause micro cracking.

The information extracted from this study can be used to "modify the formulation of the cement for infrastructures that are going to be located in environments with extreme temperatures. Let us take for example an oil company: knowing the stresses and forces that may be created in the cement, they would have the chance to change certain design factors, such as the additives added to the cement to compensate for the expansion or collapsing of the material in oil wells. That would be the ideal application of the work," concluded Manzano.
-end-
Additional information

Hegoi Manzano-Moro has a PhD in Chemistry and works as a Temporary Contractual Lecturer in the UPV/EHU's department of Condensed Matter Physics. This work is the result of the collaboration he has with Patrick A. Bonnaud, a researcher at the University of Tohoku in Japan.

Bibliographical reference

P. A. Bonnaud, H. Manzano, R. Miura, A. Suzuki, N. Miyamoto, N. Hatakeyama, A. Miyamoto. Temperature Dependence of Nanoconfined Water Properties: Application to Cementitious Materials. J. Phys. Chem. C, 2016, 120 (21), pp 11465-11480. DOI: 10.1021/acs.jpcc.6b00944. Publication Date (Web): May 10, 2016

University of the Basque Country

Related Cement Articles:

A recipe for concrete that can withstand road salt deterioration
Engineers have known for some time that calcium chloride salt, commonly used as deicer, reacts with the calcium hydroxide in concrete to form a chemical byproduct that causes roadways to crumble.
Professor Shiho Kawashima wins NSF Career Award
Professor Shiho Kawashima, assistant professor of civil engineering and engineering mechanics, has won a National Science Foundation CAREER Award to support her work developing concrete systems for use in 3-D printing, a technology that could revolutionize the construction and repair of infrastructure.
Sustainable ceramics without a kiln
ETH Zurich material scientists have developed a new method of manufacturing ceramics that does not require the starting materials to be fired.
Rice U probes ways to turn cement's weakness to strength
Rice University scientists show how cement particles can handle stress by gradually passing it from one layer to the next and turning weakness to strength.
Decoding cement's shape promises greener concrete
Rice University materials scientists develop techniques to control the microscopic shape of cement particles for the bottom-up manufacture of stronger, more durable and more environmentally friendly concrete.
Cement made from steel production byproduct can lead to a huge CO2 reduction
Steel production generates some hundred million tons of steel slag worldwide each year.
Cement materials are an overlooked and substantial carbon 'sink'
A new study involving the University of East Anglia shows that cement structures are a substantial but overlooked absorber of carbon emissions -- offsetting some of those emitted during cement production itself.
Concrete jungle functions as carbon sink, UCI and other researchers find
Cement manufacturing is among the most carbon-intensive industrial processes, but an international team of researchers has found that over time, the widely used building material reabsorbs much of the CO2 emitted when it was made.
New tech uses electricity to track water, ID potential problems in concrete
Researchers from North Carolina State University and the University of Eastern Finland have developed a new technique for tracking water in concrete structures -- allowing engineers to identify potential issues before they become big problems.
Rice University lab explores cement's crystalline nature to boost concrete performance
Rice University scientists analyze the crystalline structure of calcium silicates used in cement to maximize the ability to fine-tune the material.

Related Cement Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...