Nav: Home

Cement design should take into account the water confined in the smallest pores

August 09, 2016

As it is a basic building material used across the world, cement is subjected to a vast range of conditions, both physiological and meteorological, no matter whether they are caused by extreme temperatures and humidity, pressure, etc. It is possible to find conditions ranging from -80 ºC, in places such as the scientific bases in the Antarctic, to several hundreds of degrees in infrastructures close to heat sources or in the case of fires, for example.

These variations in humidity and temperature are translated into physical processes involving evaporation or freezing of the water contained in the cement paste, which often cause stresses and even micro-cracking inside the cement. Characterizing the response to these phenomena affecting the confined water in the smallest pores of the cement "is hugely important as a large proportion of the water, about 30 %, is located in these small spaces, so to a great extent it contributes towards the final properties of the material," explained Hegoi Manzano, a researcher in the UPV/EHU's department of Condensed Matter Physics, and author of the study in collaboration with a research group of the University of Tohoku in Japan.

Given the complexity involved in studying the behaviour of the water located in such tiny pores of approximately 1 nanometre in size by means of experimental channels, the researchers resorted to molecular simulation methods that "imitate" the interactions among the atoms that make up the cement in order to determine how they behave as a whole and the properties that these interactions are translated into," he explained. The temperature range they studied was from -170 ºC to 300 ºC.

Stresses at both extremes

In the results obtained in the simulations they were able to observe that at both extremes of temperature "significant volume changes owing to water physics take place. Through totally opposite effects we arrived at the same consequences", he remarked. At high temperatures the water evaporates and disappears from the pores. In these conditions the pressure brought to bear by the material itself may cause the empty pores to collapse and micro cracking to be created which, in particularly serious cases, could cause the material to collapse.

At the other extreme, at extremely low temperatures, what happens is that the water freezes and therefore expands. "In these conditions it should be highlighted that the frozen water does not manage to form ice because of the small space in which it is located; the water molecules cannot order themselves to form a crystalline ice structure," he stressed. But the expansion it undergoes is enough to create stresses in the cement and likewise cause micro cracking.

The information extracted from this study can be used to "modify the formulation of the cement for infrastructures that are going to be located in environments with extreme temperatures. Let us take for example an oil company: knowing the stresses and forces that may be created in the cement, they would have the chance to change certain design factors, such as the additives added to the cement to compensate for the expansion or collapsing of the material in oil wells. That would be the ideal application of the work," concluded Manzano.
-end-
Additional information

Hegoi Manzano-Moro has a PhD in Chemistry and works as a Temporary Contractual Lecturer in the UPV/EHU's department of Condensed Matter Physics. This work is the result of the collaboration he has with Patrick A. Bonnaud, a researcher at the University of Tohoku in Japan.

Bibliographical reference

P. A. Bonnaud, H. Manzano, R. Miura, A. Suzuki, N. Miyamoto, N. Hatakeyama, A. Miyamoto. Temperature Dependence of Nanoconfined Water Properties: Application to Cementitious Materials. J. Phys. Chem. C, 2016, 120 (21), pp 11465-11480. DOI: 10.1021/acs.jpcc.6b00944. Publication Date (Web): May 10, 2016

University of the Basque Country

Related Cement Articles:

Cytotoxicity and physical properties of glass ionomer cement containing flavonoids
At the 97th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 48th Annual Meeting of the American Association for Dental Research (AADR) and the 43rd Annual Meeting of the Canadian Association for Dental Research (CADR), Aline de Castilho, University of Campinas, Brazil, presented a poster on 'Cytotoxicity and Physical Properties of Glass Ionomer Cement Containing Flavonoids.'
Cement as a climate killer: Using industrial waste to produce carbon neutral alternatives
Producing cement takes a big toll on our climate: Around eight per cent of annual global carbon dioxide emissions can be attributed to this process.
Preventing concrete bridges from falling apart
A new study published in EPJ B examines the adverse effects of the adsorption of natural gas constituents found in our environment -- and mixtures of several such gases -- into one of the materials that make up concrete: cement hydrate.
New 3D-printed cement paste gets stronger when it cracks -- just like structures in nature
Purdue University researchers have 3D-printed cement paste, a key ingredient of the concrete and mortar used to build various elements of infrastructure, that gets tougher under pressure like the shells of arthropods such as lobsters and beetles.
Spheres can make concrete leaner, greener
Rice University scientists make micron-sized calcium silicate spheres that could lead to stronger and greener concrete, the world's most-used synthetic material.
More Cement News and Cement Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...