Nav: Home

Spying on malaria parasites at -196 Celsius

August 09, 2017

Malaria research: By combining two advanced microscope techniques an international team of scientists led by postdoc Sergey Kapishnikov from the Niels Bohr Institute has managed to obtain new information about the ravaging mode of operation applied by malaria parasites when attacking their victims. This information can be utilized when designing new medication to more effectively fight malaria - a disease claiming over 400.000 lives each year, a majority of whom are infants.

Sergey Kapishnikov and Jens Als-Nielsen in the laboratory at the HC Ørsted Institute in Copenhagen.

Conducting real-time studies of a malaria parasite is difficult - you have to keep it on a very short leash to stand a chance of succeeding. And the leash, which allows for close-up examination, may involve the use of liquid nitrogen. This is shown in an international research project headed by postdoc Sergey Kapishnikov from X-ray and Neutron Science at Niels Bohr Institute (NBI), University of Copenhagen, Denmark.

The project, which will appear as an article in this weeks issue of Scientific Reports , has come about as a co-operation between research institutions in Denmark, Germany, Switzerland, Spain and Israel - and besides Sergey Kapishnikov NBI is represented by professor emeritus Jens Als-Nielsen.

The scientists took advantage of the well established fact that all life processes in biological material are 'bliz-frozen' and thereby suspended if the material is kept in liquid nitrogen, says Sergey Kapishnikov:

"In the lab we infected human red blood cells with malaria parasites. We then - ultimately - placed the infected blood cells in liquid nitrogen which at -196 Celsius is extremely cold - and that way we were able to get new information about how the parasites work when they demolish the victim's red blood cells. Observing this also gave us a number of new and creative ideas as to how the parasites can possibly be derailed - e.g. by tailoring a drug which can sabotage their waste disposal system so that they would end up drowning in their own litter. This is something we will examine further, and we are definitely looking towards developing concepts for new types of medication against malaria. Such antimalarials are sorely needed - since whenever a drug has been in use for some time, resistance against it will inevitably pop up and start spreading, and then you obviously need to intoduce new medications".

Sergey Kapishnikov and his colleagues were able to carry out their investigation thanks to two different forms of advanced microscope examination: X-ray fluorescence microscopy (XRF) and soft X-ray tomography (SXT), conducted at synchrotron facilities in Spain, Germany and Switzerland.

Combining the two methods enabled the scientists to locate where - internally - the damage-causing parasites store iron (in the form of heme-molecules). This iron - which is very poisonous and potentially lethal to the malaria parasites - orginates from the victim's red blood cells, which the parasites have invaded, explains Sergey Kapishnikov:

"The parasites develop in the victim when he or she is bitten by a malaria infected mosquito - the initial phase of development taking place in the victim's liver. From there-on the parasites are released into the blood stream and multiply at high rate while invading still more red blood cells - and if medical treatment is not undertaken, the person will eventually be at risk of dying from this attack. And while the parasites are ravaging, they degrade hemoglobin in the red blood cells where they are 'nesting'. At the same time, however, the parasites have to deal with an ever-present challenge, says Sergey Kapishnikov:

"They must get rid of heme, the iron-part of the hemoglobin they are destroying - and it is well known that the parasites solve this problem by crystallizing heme. This means that the iron is now locked safely up and therefore neutralized so that it no longer represents a threat to the parasites. Yet science is still struggling with a number of questions and explanations related to the crystallization process. Which was why we designed a set-up whereby we - thanks to XRF-microscopy as well as SXT-tomography - were able to create 3D images of malaria parasites in human blood cells. Which made it possible for us to see details never described before - some pertaining to the localization of heme in the parasites, some linked to the crystallization process", explains Sergey Kapishnikov.

When analyzed collectively, the scientist argue in their paper, these observations point to the likely existence of some sort of feed-back principle - a principle central to the speed and execution of the hemoglobin digestion and the crystallization process carried out by malaria parasites.

"We hypothesize that this mechanism controls the speed at which the malaria parasites are digesting hemoglobin - and thereby also limit the rate of release of the toxic heme", says Sergey Kapishnikov:

"If that is indeed the case, you may possibly stop the malaria parasite from surviving by targeting this mechanism with a drug. Such medication might be aimed at speeding up the release of hemoglobin in malaria infected human red blood cells to such a degree that the parasites would not have enough time to carry out the crystallization process. Which would leave them to die from their own toxic waste".

The scientists will also look at the possibility of manipulating and derailing a specific protein believed to 'facilitate' the transition between the parasites' heme-excretion and the subsequent crystallization. This research, planned to go ahead in the near future, will be carried out in co-operation with American colleagues.

Traveling cells

A blood bank kindly supplied the scientist with the red blood cells they needed, and the scientists decided to infect these cells with Plasmodium falciparum, the most feared among the five types of malaria which infect humans. And once the malaria attack in the test-cells had reached a certain level, all cells were exposed to liquid nitrogen - 'speed-frozen' at -196 Celsius - and then subjected to further examination, whereupon eight (8) cells were singled out.

In order for the selected cells to be studied via XRF as well as SXT they had to meet certain criteria, says Sergey Kapishnikov: "The cells had to be without damage - and the ice-coating surrounding them could not be too thick - otherwise it would be impossible for us to observe the parasites within the blood cells. It took quite an effort to localize these eigh perfect cells, but now we know how to trace them - so the next time we will be able to go ahead with a far greater number of malaria infected cells".

One of the challenges which the scientists encountered had to do with transporting the infected blood cells back and forth among the participating research institutions, says Sergey Kapishnikov:

"From the moment the eight cells were singled out for the experiment and until it was all over, the cells had to be kept at -196 Celsius. This meant that whenever we transported the cells, they were kept in small tubes stored in a special suitcase which weighed approximately 20 kilogram. At some point I had to bring this suitcase - which I was guarding zealously - from Israel to Germany, and it actually took a lot of paperwork in advance to convince the authorities of these two countries that they could safely let me board as well as disembark the plane - suitcase in hand".
-end-
Sergey's research at the Niels Bohr Institute is financed by the Carlsberg Foundation.

Sergey Kapishnikov, Postdoc at X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Phone: +45 35 33 43 55, Email: Sergey.Kapishnikov@nbi.ku.dk

Faculty of Science - University of Copenhagen

Related Malaria Articles:

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.
Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.
Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.
Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.
Seeking better detection for chronic malaria
In people with chronic malaria, certain metabolic systems in the blood change to support a long-term host-parasite relationship, a finding that is key to eventually developing better detection, treatment and eradication of the disease, according to research published today in the Journal of Clinical Investigation Insight.
Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.
Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.
The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.
Free malaria tests coupled with diagnosis-dependent vouchers for over-the-counter malaria treatment
Coupling free diagnostic tests for malaria with discounts on artemisinin combination therapy (ACT) when malaria is diagnosed can improve the rational use of ACTs and boost testing rates, according to a cluster-randomized trial published this week in PLOS Medicine by Wendy Prudhomme O'Meara of Duke University, USA, and colleagues.
Certain antibodies against a sugar are associated with malaria protection
Certain type of antibodies against α-Gal- a carbohydrate expressed by many organisms including the malaria parasite- could protect against malaria, according to a new study led by ISGlobal, an institution supported by 'la Caixa' Foundation.
More Malaria News and Malaria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.