Nav: Home

Smart windows that go from clear to dark in under a minute

August 09, 2017

Stanford University engineers have developed dynamic windows that can switch from transparent to opaque or back again in under a minute and do not degrade over time. The prototypes are plates of conductive glass outlined with metal ions that spread out over the surface, blocking light, in response to electrical current. The group recently filed a patent for the work, presented August 9 in the journal Joule, Cell Press's new publication for energy research and green technology.

Dynamic windows have the potential to transform our homes, businesses, cars, and more, reducing heating and cooling costs or the need for blinds, but even though the technology exists, it has yet to really catch on in the marketplace. Smart windows already being sold, such as those used on airlines, are made of materials, such as tungsten oxide, that change color when charged with electricity. But these materials tend to be expensive, have a blue tint, can take over 20 minutes to dim, and become less opaque over time.

"We did not tweak what was out there, we came up with a completely different solution," says senior author Michael McGehee, a Stanford University professor of materials science and engineering with a background in solar cells. "We've had a lot of moments where we've thought, 'how is it even possible that we've made something that works so well, so quickly,' and we're now running the technology by glass and other kinds of companies."

McGehee and his group's prototype blocks light through the movement of copper and another metal in a solution over a sheet of transparent indium tin oxide modified by platinum nanoparticles. When transparent, the windows are clear and allow about 80 percent of surrounding natural light through, and when dark, transmission drops to under 5 percent. The researchers switched the windows on and off at least 5,500 times and saw no change in the transmission of light, indicating that the design is durable.

There is still work to do before scaling up, however. McGehee says that there is currently a limit in how much area the prototypes can cover (the study looked at 25 cm2 windows), but there are plans to address this problem. His group also wants to iterate the metal electrodes. The goal is to cut the cost of the prototype so that it is at least half the cost of dynamic windows that are already on the market.

"We're excited because dynamic window technology has the potential to optimize the lighting in rooms or vehicles, save about 20% in heating and cooling costs, and even change the way people wear sunglasses" McGehee says. "This is an important area that is barely being investigated at universities, and there's a lot of opportunity to keep us motivated."
-end-
This research was funded by the Precourt Institute for Energy at Stanford, with additional support from Stanford Graduate Fellowships, and a National Science Foundation Graduate Research Fellowship.

Joule, Yue et al: "Dynamic Windows with Neutral Color, High Contrast, and Excellent Durability using Reversible Metal Electrodeposition" http://www.cell.com/joule/fulltext/S2542-4351(17)30001-6

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Glass Articles:

The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.
Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.
On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.
Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.
Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.
Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.
New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.
In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.
Laser-fabricated crystals in glass are ferroelectric
For the first time, a team of researchers from Lehigh University, Oak Ridge National Laboratory, Lebanon Valley College and Corning Inc. has demonstrated that laser-generated crystals confined in glass retain controllable ferroelectric properties, key to creating faster, more efficient optical communication systems.
New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?
More Glass News and Glass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.