Satellite measurements of the Earth's magnetosphere promise better space weather forecasts

August 09, 2018

Kanazawa, Japan - Earth is constantly being hammered by charged particles emitted by the Sun that have enough power to make life on Earth almost impossible. We survive because Earth's magnetic field traps and deflects these particles, preventing the vast majority of them from ever reaching the planet's surface. The trapped particles bounce back and forth between the North and South poles in complex, ever-changing patterns that are also influenced by equally intricate and shifting electric fields. We get to enjoy the sight of those particles when the bands they move in (the Van Allen radiation belts) dip into our atmosphere near the poles creating the Northern (and Southern) lights. However, bursts of these particles can damage satellites and sensitive equipment on the ground.

It is therefore vital to understand the intricacies of the radiation belts. So far, NASA have launched twin satellites to study the Van Allen belts--however, their orbits only allow them to explore the equatorial regions. This limits our ability to understand flow of particles and prevents us from predicting their effects on all satellites.

To also explore regions further from the equator, the Institute of Space and Astronautical Science, a division of the Japan Aerospace Exploration Agency, launched the Arase satellite in 2016. A Japan-based research team centered at Kanazawa University equipped the Arase satellite with multiple different sensors (termed the Plasma Wave Experiment) to probe the electric field and plasma waves in the Earth's inner magnetosphere. Now, they have collected their first set of data from their sensors, which they recently published in the Springer journal Earth, Planets and Space.

The Arase consists primarily of electric and magnetic field detectors covering a wide frequency range; it can also measure plasma/particles in a wide energy range. To improve efficiency, an on-board computer studies the correlations between the fields and the particles before sending only the most important information back to Earth.

"The Plasma Wave Experiment equipment has passed initial checks and has successfully acquired high quality data. Huge amount of burst waveform data has been taken, and we should soon know a lot more about mechanisms of wave-particle interaction occurring in the inner magnetosphere than before. Another strength of our project is that we can also compare the satellite data with data collected simultaneously on the ground. We expect those comparisons will greatly broaden our understanding of this area of science," first author Yoshiya Kasahara says.

Understanding how electrons and other particles are hurled out of the magnetosphere onto our planet could be key to predicting such bursts and protecting against them.
-end-


Kanazawa University

Related Magnetosphere Articles from Brightsurf:

Final images from Cassini spacecraft
Researchers are busy analysing some of the final data sent back from the Cassini spacecraft which has been in orbit around Saturn for more than 13 years until the end of its mission in September 2017.

Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.

Alternating currents cause Jupiter's aurora
An international research team has measured the system of currents that generates Jupiter's aurora.

In solar system's symphony, Earth's magnetic field drops the beat
Inside Earth's magnetic bubble, scientists have long been listening in on space sounds created by various electromagnetic waves, and now they've found one that booms like a drum.

Visualization of regions of electromagnetic wave-plasma interactions surrounding the Earth
The researchers investigated wave-particle interactions between energetic electrons and chorus waves evolving in the space surrounding the Earth, using the scientific satellite Arase and, simultaneously, transient auroral flashes by the ground-based global observation network.

Wave-particle interactions allow collision-free energy transfer in space plasma
A team including researchers from Nagoya University finds evidence of collisionless energy transfer occurring in the plasma of Earth's magnetosphere.

Measurements reveal a two-step energy flow process in Earth's magnetosphere
Scientists have obtained in situ measurements of Earth's magnetosphere, demonstrating a phenomenon that's long been thought to happen but not yet directly been shown: energy is transferred from hydrogen ions to plasma waves, and then from the waves to helium ions.

Satellite measurements of the Earth's magnetosphere promise better space weather forecasts
A Japan-based research team led by Kanazawa University equipped the Arase satellite with sensors to study the convoluted interactions between high-energy particles in the inner magnetosphere and the Earth's electric and magnetic field.

Russian and Georgian universities unite to study properties of solitons
Dr. Belashov explains,

Old data, new tricks: Fresh results from NASA's Galileo spacecraft 20 years on
Newly analyzed data from the Galileo spacecraft's flybys of one of Jupiter's moons two decades ago is yielding fresh insights: the magnetic field around the moon Ganymede makes it unlike any other in the solar system.

Read More: Magnetosphere News and Magnetosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.