Discovery presents treatment hope for Alzheimer's and other neurodegenerative diseases

August 09, 2018

There is new hope for the treatment of Alzheimer's and other neurological diseases following a ground-breaking discovery made by an Australian-Chinese research collaboration.

Researchers from the University of South Australia and the Third Military Medical University in China have discovered a signal pathway within cells, and also invented a potential drug that could stop degeneration and actually improve learning and memory in affected patients.

UniSA's Professor Xin-Fu Zhou and colleagues have been investigating tauopathies - which refers to a class of diseases caused by misfolding of the tau protein inside nerve cells that results in cell damage and eventually cell death.

These diseases include Alzheimer's, Parkinson's and Motor Neuron Disease, all of which presently have no cure.

Specifically, the team has looked into frontotemporal lobe degeneration (FTLD), a term representing a group of clinical syndromes related to cognitive impairment, behavioural abnormalities and speech disorders.

Professor Zhou says that previously it was unknown how the gene mutation was responsible for causing cell death or damage - referred to generally as neurodegeneration, and dementia in patients with FTLD and other motor neuron diseases. "Right now there is no treatment available at all," Prof Zhou says. "We have been investigating how these tauopathies (diseases) have some common pathology, including a particular tau protein that plays a critical role in nerve cell function."

Tau protein is a protein that stabilises microtubules and it is specifically abundant in neurons of the nervous system, but not in elsewhere.

"Our research found that in both the animal model and human brains, the signal of neurotrophins and receptors is abnormal in brains with FTLD," Prof Zhou says.

"We discovered an increase in the neurotrophin signalling pathway that is related to life and death of nerve cells, known as proNGF/p75, and then found blocking its functions was shown to reduce cell damage.

"Thus, in this paper we not only discovered a signaling pathway but also invented a potential drug for treatment of such diseases."

Given this strong evidence now available, the next stage is a clinical trial and South Australian biotech company Tiantai Medical Technology Pty Ltd has recently acquired a licence to further develop and commercialise this medical technology.

Professor Zhou says this industry involvement means there is an opportunity to translate the discovery into a treatment of Alzheimer's disease and other tauopathies.
-end-
The paper published in Molecular Psychiatry is a collaborative work between two laboratories led by Professor Xin-Fu Zhou, University of South Australia and Professor Yanjiang Wang, the Third Military Medical University.

University of South Australia

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.