Research brief: New 3D-printed device could help treat spinal cord injuries

August 09, 2018

Engineers and medical researchers at the University of Minnesota have teamed up to create a groundbreaking 3D-printed device that could someday help patients with long-term spinal cord injuries regain some function.

A 3D-printed guide, made of silicone, serves as a platform for specialized cells that are then 3D printed on top of it. The guide would be surgically implanted into the injured area of the spinal cord where it would serve as a type of "bridge" between living nerve cells above and below the area of injury. The hope is that this would help patients alleviate pain as well as regain some functions like control of muscles, bowel and bladder.

The research is published online today in Advanced Functional Materials, a peer-reviewed scientific journal.

A video related to the research can be found here: https://z.umn.edu/3Dguidespinalcord

"This is the first time anyone has been able to directly 3D print neuronal stem cells derived from adult human cells on a 3D-printed guide and have the cells differentiate into active nerve cells in the lab," said Michael McAlpine, Ph.D., a co-author of the study and University of Minnesota Benjamin Mayhugh Associate Professor of Mechanical Engineering in the University's College of Science and Engineering.

"This is a very exciting first step in developing a treatment to help people with spinal cord injuries," said Ann Parr, M.D., Ph.D., a co-author of the study and University of Minnesota Medical School Assistant Professor in the Department of Neurosurgery and Stem Cell Institute. "Currently, there aren't any good, precise treatments for those with long-term spinal cord injuries."

There are currently about 285,000 people in the United States who suffer from spinal cord injuries, with about 17,000 new spinal cord injuries nationwide each year.

In this new process developed at the University of Minnesota over the last two years, researchers start with any kind of cell from an adult, such as a skin cell or blood cell. Using new bioengineering techniques, the medical researchers are able to reprogram the cells into neuronal stem cells. The engineers print these cells onto a silicone guide using a unique 3D-printing technology in which the same 3D printer is used to print both the guide and the cells. The guide keeps the cells alive and allows them to change into neurons. The team developed a prototype guide that would be surgically implanted into the damaged part of the spinal cord and help connect living cells on each side of the injury.

"Everything came together at the right time," Parr said. "We were able to use the latest cell bioengineering techniques developed in just the last few years and combine that with cutting-edge 3D-printing techniques."

Even with the latest technology, developing the prototype guides wasn't easy.

"3D printing such delicate cells was very difficult," McAlpine said. "The hard part is keeping the cells happy and alive. We tested several different recipes in the printing process. The fact that we were able to keep about 75 percent of the cells alive during the 3D-printing process and then have them turn into healthy neurons is pretty amazing."

If the next steps are successful, the payoff for this research could be life-changing for those who suffer from spinal cord injuries.

"We've found that relaying any signals across the injury could improve functions for the patients," Parr said. "There's a perception that people with spinal cord injuries will only be happy if they can walk again. In reality, most want simple things like bladder control or to be able to stop uncontrollable movements of their legs. These simple improvements in function could greatly improve their lives."
-end-
In addition to McAlpine and Parr, the University of Minnesota research team includes Department of Mechanical Engineering staff and students Daeha Joung, Shuang-Zhuang Guo, Joseph R. Monat, Fanben Meng, and Sung Hyun Park; Department of Neurosurgery and Stem Cell Institute staff and students Vincent Truong, Colin C. Neitzke, and Patrick J. Walsh; and Department of Genetics, Cell Biology and Development and Stem Cell Institute Assistant Professor James R. Dutton.

The research was funded primarily by Conquer Paralysis Now, a global project of the Sam Schmidt Foundation; the Minnesota Spinal Cord Injury and Traumatic Brain Injury Research Grant Program; the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health; the University of Minnesota Clinical and Translational Science Institute; and an anonymous donor.

To read the full research paper, entitled "3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds," visit the Advanced Functional Materials website.

University of Minnesota

Related Spinal Cord Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Improving treatment of spinal cord injuries
A group led by UC Riverside bioengineering professor Victor G.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.

An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.

Read More: Spinal Cord News and Spinal Cord Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.