Nav: Home

A conversation between plants' daily and aging clocks

August 09, 2018

Every day you get a day older. So do plants. While the biological daily clock ticks, time passes also for the aging clock. Scientists at the Center for Plant Aging Research, within the Institute for Basic Science (IBS), have found out how the two clocks talk to each other genetically. Plants' circadian clock - the 24-hour cyclic rhythm - plays a critical role in regulating aging, in particular in timing the yellowing of the leaves. As aging plants recycle nutrients for the new leaves and seeds, uncovering these timekeeping mechanisms is important to understand plant productivity.

Most organisms are influenced by the daily and annual cycle of light and temperature. The circadian clock functions as a "mastermind" to align many aspects of development and physiology with certain times of the year or the day.

In plants, the main gears of the daily clock are nine genes which have a peak in their biological activity either in the morning (morning complex) or in the early evening (evening complex). They work as a network and regulate plants' growth and flowering. In this study published in PNAS, IBS researchers used plants deficient in one of these nine core circadian clock components at a time to study the effect on the aging clock.

In animals, the two biological clocks are interlinked; it was found that mutations in clock genes accelerate aging, and aging alters the circadian rhythmicity. However, the relationship between the aging and circadian clocks in plants has not been clarified yet. IBS researchers have used the model plant Arabidopsis thaliana and determined that some daily clock genes are directly or indirectly related to aging.

To identify clock components directly involved in aging, the team examined the timing of leaf yellowing over time and in the dark, as darkness makes Arabidopsis age faster. Plants lacking three components (elf3, elf4, and lux) of the evening complex had yellow leaves sooner, whereas plants without the morning component PRR9 (PSEUDO-RESPONSE REGULATORS 9) remained green for longer showing delayed aging, in both age-dependent and dark-induced conditions. Then, the researchers found that PRR9 plays an important role in the expression of a key gene for plant senescence, known as ORE1. In this way, the two clocks interact with each other.

"Time controls aging, but the question is how do plants recognize the passage of time through their lifespan? We found out that plant's daily oscillatory clock interacts with the aging linear clock during their lifetime." explains NAM Hong Gil, the Center research director and corresponding co-author.

In the future, the team would like to extend the network and understand how the circadian clock and aging interact with the external environment. Finally, the team would like to take advantage of the aging clock for regulating age-dependent developmental processes.
-end-


Institute for Basic Science

Related Aging Articles:

Brain development and aging
The brain is a complex organ -- a network of nerve cells, or neurons, producing thought, memory, action, and feeling.
Aging gracefully in the rainforest
In an article that appears in the current issue of Evolutionary Anthropology, researchers synthesize over 15 years of theoretical and empirical findings from long-term study of the Tsimane forager-farmers.
Reversing aging now possible!
DGIST's research team identified the mechanism of reversible recovery of aging cells by inducing lysosomal activation.
Brain-aging gene discovered
Researchers at Columbia University Medical Center have discovered a common genetic variant that greatly affects normal brain aging in older adults.
Aging can be good for you (if you're a yeast)
It's a cheering thought for anyone heading towards their golden years.
How eating less can slow the aging process
New research shows why calorie restriction made mice live longer and healthier lives.
Turning back the aging clock
By boosting genes that destroy defective mitochondrial DNA, researchers can slow down and potentially reverse an important part of the aging process.
Insilico Medicine launches a deep learned biomarker of aging, Aging.AI 2.0 for testing
Insilico Medicine, Inc., a company applying latest advances in deep learning to biomarker development, drug discovery and aging research, launched Aging.AI 2.0.
Substance with the potential to postpone aging
The coenzyme NAD+ plays a main role in aging processes.
What does a healthy aging cat look like?
Just as improved diet and medical care have resulted in increased life expectancy in humans, advances in nutrition and veterinary care have increased the life span of pet cats.

Related Aging Reading:

Aging Well: Surprising Guideposts to a Happier Life from the Landmark Harvard Study of Adult Development
by George E. Vaillant (Author)

Mindful Aging: Embracing Your Life After 50 to Find Fulfillment, Purpose, and Joy
by Andrea Brandt (Author)

Aging as a Spiritual Practice: A Contemplative Guide to Growing Older and Wiser
by Lewis Richmond (Author)

Aging: An Apprenticeship
by Nan Narboe (Editor)

The Gift of Years: Growing Older Gracefully
by Joan Chittister (Author)

The Grace in Aging: Awaken as You Grow Older
by Kathleen Dowling Singh (Author)

Adult Development and Aging
by John C. Cavanaugh (Author), Fredda Blanchard-Fields (Author)

Dynamic Aging: Simple Exercises for Whole-Body Mobility
by Katy Bowman (Author), Joan Virginia Allen (Author)

Choosing the StrongPath: Reversing the Downward Spiral of Aging
by Fred Bartlit (Author), Steven Droullard (Author), Marni Boppart ScD (Author)

Aging: Concepts and Controversies
by Harry R. Moody (Author), Jennifer R. Sasser (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#492 Flint Water Crisis
This week we dig into the Flint water crisis: what happened, how it got so bad, what turned the tide, what's still left to do, and the mix of science, politics, and activism that are still needed to finish pulling Flint out of the crisis. We spend the hour with Dr Mona Hanna-Attisha, a physician, scientist, activist, the founder and director of the Pediatric Public Health Initiative, and author of the book "What the Eyes Don't See: A Story of Crisis, Resistance, and Hope in an American City".