Supercomputer simulations show new target in HIV-1 replication

August 09, 2018

HIV-1 replicates in ninja-like ways. The virus slips through the membrane of vital white blood cells. Inside, HIV-1 copies its genes and scavenges parts to build a protective bubble for its copies. Scientists don't understand many of the details of how HIV-1 can fool our immune system cells so effectively. The virus infects 1.2 million people in the U.S. and 37 million people worldwide in 2018. Supercomputers helped model a key building block in the HIV-1 protective capsid, which could lead to strategies for potential therapeutic intervention in HIV-1 replication.

Scientists found the naturally-occurring compound inositol hexakisphosphate (IP6) promotes both assembly and maturation of HIV-1. "We discovered, in collaboration with other researchers, that HIV uses this small molecule to complete its function," said Juan R. Perilla, Department of Chemistry and Biochemistry, University of Delaware. "This is a molecule that's extremely available in human cells and in other mammalian cells. HIV has evolved to make use of these small molecules present in our cells to essentially be infectious." Perilla co-authored the study in the journal Nature in August 2018.

Perilla ran simulations of inositol phosphate interactions with HIV structural proteins CA-CTD-SP1 using NAMD through allocations on XSEDE, the Extreme Science and Engineering Environment, funded by the National Science Foundation. "XSEDE provides a unique framework which allows us to use computational resources that are tailored to the needs of a particular scientific problem. In addition, we benefit from the HPC training opportunities provided by XSEDE which allows us to develop novel analysis tools," Perilla said.

The allocation included time on the Anton2 system of the Pittsburgh Supercomputing Center to run atomistic simulations of bound IP6. "Anton2 enabled us to perform long-scale simulations to test the stability of the immature capsid assembly and IP6," Perilla said.

Through XSEDE, the Stampede2 system at the Texas Advanced Computing Center ran NAMD simulations of the Inositol phosphates IP3, IP4, IP5 and their interactions with HIV proteins CA-CTD-SP1. "What Stampede2 allowed us to do is establish what the molecular interactions are between the HIV proteins and this small molecule and to test the hypothesis that it was stabilizing a particular part of the protein using molecular dynamics," said Juan Perilla.

"I think Stampede2 is a great machine, and it's extremely beneficial to the scientific community to have a resource like that available on a merit-based system. What I would like the public to know is that it's important that these large-scale machines are available. They are not just a replacement of a small cluster. These machines really enable new science. If you didn't have machines of this scale, you couldn't do the kind of science that we do because our problems are larger than what you can have on a campus cluster. We really need to have the scale of these machines available to the scientific community to enable the kind of science that we do," Perilla said.

Perilla described the increasing use of the 'computational microscope,' the combination of supercomputers with laboratory data. "With the computational microscope, you can see how things move. Many experimental techniques are just a snapshot. With the computational microscope, you can actually see how things are moving," he said.

Supercomputer modeling of how building blocks of HIV-1 move in time made a difference in this study. "That discovery opens a door for development of new treatments. It's a therapeutic target. Because of that, it makes it very appealing for drug development and therapeutic development," Perilla said.

There remains much to be learned about HIV-1 behaves, said Perilla. "We're basic scientists. NSF's mission is to understand these systems as living organisms. The overall idea is that we want to understand the virus as a biological problem and ultimately this knowledge will be used to derive therapeutics," Perilla said.
-end-
The study, "Inositol phosphates are assembly cofactors for HIV-1," was published in the journal Nature on August 1, 2018. The study authors are Robert A. Dick and Volker M. Vogt of Cornell University; Kaneil K. Zadrozny, Jonathan M. Wagner, Barbie K. Ganser-Pornillos, and Owen Pornillos of the University of Virginia; Chaoyi Xu" and Juan R. Perilla of the University of Delaware; Florian K. M. Schur of the European Molecular Biology Laboratory and the Institute of Science and Technology Austria; Terri D. Lyddon, Marc C. Johnson, and Clifton L. Ricana of the University of Missouri. The National Institutes of Health funded the research. This work used the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant number OCI-1053575.

University of Texas at Austin, Texas Advanced Computing Center

Related HIV Articles from Brightsurf:

BEAT-HIV Delaney collaboratory issues recommendations measuring persistent HIV reservoirs
Spearheaded by Wistar scientists, top worldwide HIV researchers from the BEAT-HIV Martin Delaney Collaboratory to Cure HIV-1 Infection by Combination Immunotherapy (BEAT-HIV Collaboratory) compiled the first comprehensive set of recommendations on how to best measure the size of persistent HIV reservoirs during cure-directed clinical studies.

The Lancet HIV: Study suggests a second patient has been cured of HIV
A study of the second HIV patient to undergo successful stem cell transplantation from donors with a HIV-resistant gene, finds that there was no active viral infection in the patient's blood 30 months after they stopped anti-retroviral therapy, according to a case report published in The Lancet HIV journal and presented at CROI (Conference on Retroviruses and Opportunistic Infections).

Children with HIV score below HIV-negative peers in cognitive, motor function tests
Children who acquired HIV in utero or during birth or breastfeeding did not perform as well as their peers who do not have HIV on tests measuring cognitive ability, motor function and attention, according to a report published online today in Clinical Infectious Diseases.

Efforts to end the HIV epidemic must not ignore people already living with HIV
Efforts to prevent new HIV transmissions in the US must be accompanied by addressing HIV-associated comorbidities to improve the health of people already living with HIV, NIH experts assert in the third of a series of JAMA commentaries.

The Lancet HIV: Severe anti-LGBT legislations associated with lower testing and awareness of HIV in African countries
This first systematic review to investigate HIV testing, treatment and viral suppression in men who have sex with men in Africa finds that among the most recent studies (conducted after 2011) only half of men have been tested for HIV in the past 12 months.

The Lancet HIV: Tenfold increase in number of adolescents on HIV treatment in South Africa since 2010, but many still untreated
A new study of more than 700,000 one to 19-year olds being treated for HIV infection suggests a ten-fold increase in the number of adolescents aged 15 to 19 receiving HIV treatment in South Africa, according to results published in The Lancet HIV journal.

Starting HIV treatment in ERs may be key to ending HIV spread worldwide
In a follow-up study conducted in South Africa, Johns Hopkins Medicine researchers say they have evidence that hospital emergency departments (EDs) worldwide may be key strategic settings for curbing the spread of HIV infections in hard-to-reach populations if the EDs jump-start treatment and case management as well as diagnosis of the disease.

NIH HIV experts prioritize research to achieve sustained ART-free HIV remission
Achieving sustained remission of HIV without life-long antiretroviral therapy (ART) is a top HIV research priority, according to a new commentary in JAMA by experts at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

The Lancet HIV: PrEP implementation is associated with a rapid decline in new HIV infections
Study from Australia is the first to evaluate a population-level roll-out of pre-exposure prophylaxis (PrEP) in men who have sex with men.

Researchers date 'hibernating' HIV strains, advancing BC's leadership in HIV cure research
Researchers have developed a novel way for dating 'hibernating' HIV strains, in an advancement for HIV cure research.

Read More: HIV News and HIV Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.