Nav: Home

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions

August 09, 2018

Singapore, 10 August 2018 - Yale-NUS Associate Professor of Science (Physics) Shaffique Adam is the lead author for a recent work that describes a model for electron interaction in Dirac materials, a class of materials that includes graphene and topological insulators, solving a 65-year-old open theoretical problem in the process. The discovery will help scientists better understand electron interaction in new materials, paving the way for developing advanced electronics such as faster processors. The work was published in the peer-reviewed academic journal Science on 10 August 2018.

Electron behaviour is governed by two major theories - the Coulomb's law and the Fermi liquid theory. According to Fermi liquid theory, electrons in a conductive material behave like a liquid - their "flow" through a material is what causes electricity. For Dirac fermions, the Fermi liquid theory breaks down if the Coulomb force between the electrons crosses a certain threshold: the electrons "freeze" into a more rigid pattern which inhibits the "flow" of electrons, causing the material to become non-conductive.

For more than 65 years, this problem was relegated to a mathematical curiosity, because Dirac materials where the Coulomb threshold was reached had never been made. Today, however, we routinely make use of quantum materials for applications in technology, such as transistors in processors, where the electrons are engineered to have desired properties, including those which push the Coulomb force past this threshold. But the effects of strong electron-electron interaction can only be seen in very clean samples.

In the work immediately following his PhD, Assoc Prof Adam proposed a model to describe experimentally available Dirac materials that were "very dirty" (contains a lot of impurities). However, in the years that followed, newer and cleaner materials have been made, and this previous theory no longer worked.

In this latest work titled, "The role of electron-electron interactions in two-dimensional Dirac fermions", Assoc Prof Adam and his research team have developed a model which explains electron interactions past the Coulomb threshold in all Dirac materials by using a combination of numerical and analytical techniques.

In this research, the team designed a method to study the evolution of physical observables in a controllable manner and used it to address the competing effects of short-range and long-range parts in models of the Coulomb interaction. The researchers discovered that the velocity of electrons (the "flow" speed) in a material could decrease if the short-range interaction that favoured the insulating, "frozen" state dominated. However, the velocity of electrons could be enhanced by the long-range component that favoured the conducting, "liquid" state. With this discovery, scientists can better understand long-range interactions of electrons non-perturbatively - something that previous theories were not able to explain - and serves as useful predictors for experiments exploring the long-range-interaction divergence in Dirac electrons when they transition between conducting to insulating phases.

This improved understanding in the evolution of the electron velocity during the phase transition paves the way to help scientists develop low heat dissipation devices for electronics. Assoc Prof Adam explains, "The higher the electron velocity, the faster transistors can be switched on and off. However, this faster processor performance comes at the price of increased power leakage, which produces extra heat, and this heat will counteract the performance increase granted by the faster switching. Our findings on electron velocity behaviour will help scientists engineer devices that are capable of faster switching but low power leakage."

Assoc Prof Adam adds, "Because the mechanism in our new model harnesses the Coulomb force, it would cost less energy per switch compared to mechanisms available currently. Understanding and applying our new model could potentially usher in a new generation of technology."
-end-
The team comprises researchers from the Centre for Advanced 2D Materials (CA2DM) and the Department of Physics at the National University of Singapore (NUS), at which Assoc Prof Adam also holds joint appointments, as well as researchers from Nanyang Technological University in Singapore, Simon Fraser University in Canada and Universität Würzburg in Germany.

The work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01), Deutsche Forschungsgemeinschaft (SFB 1170 ToCoTronics, project C01), NSERC of Canada, and Singapore Ministry of Education.

(MOE2014-T2-1-112 and MOE2017-T2-1-130).

Yale-NUS College

Related Electrons Articles:

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.
Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells
Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.