Nav: Home

In apoptosis, cell death spreads through perpetuating waves, Stanford study finds

August 09, 2018

Inside a cell, death often occurs like the wave at a baseball game.

What starts with two hands flung skyward prompts another, and another, until the wave has rippled far and wide across the whole stadium. This kind of a rolling surge, spurred by the activity of one or a few things, is known as a trigger wave. A new study out of the Stanford University School of Medicine has found that this phenomenon guides one of the most well-known and widespread forms of cell death: apoptosis.

It's not the first time trigger waves have been identified in the microcosms of life. The cell cycle, a cornerstone of cell biology in which cells divide to make new cells, regulates production via trigger waves, too. So do neuronal action potentials, which allow neurons to pass signals via electrical impulse. And it likely doesn't end there.

"This work is another example of how nature makes use of these trigger waves -- things that most biologists have never heard of -- over and over again," said James Ferrell, MD, PhD, professor of chemical and systems biology and of biochemistry at Stanford. "It is a recurring theme in cell regulation. I bet we'll start to see it in textbooks soon."

One of the better-understood forms of cell death, apoptosis still manages to mystify scientists. "Sometimes our cells die when we really don't want them to -- say, in neurodegenerative diseases. And sometimes our cells don't die when we really do want them to -- say, in cancer," Ferrell said. "And if we want to intervene, we need to understand how apoptosis is regulated."

The study will be published in Science Aug. 10. Ferrell is the senior author. Postdoctoral scholar Xianrui Cheng, PhD, is the lead author.

Spreads like wildfire

Trigger waves require two main elements: a positive feedback loop and a threshold think -- falling dominoes. One domino collapses on another and triggers that domino to topple onto the next. The threshold is the force necessary to completely knock the tile over; a domino just shy of its threshold would teeter and rock back into a vertical position, whereas one that's reached the threshold would fall. Trigger waves in an apoptotic cell are governed by that same phenomenon. Once cell death is initiated, by way of disease or something else, specific killer proteins in the cell, called caspases, activate. These proteins then float to other caspases and activate them; those follow suit until the entire cell has to pack it in.

"It spreads in this fashion and never slows down, never peters out," Ferrell said. "It doesn't get any lower in amplitude because every step of the way it's generating its own impetus by converting more inactive molecules to active molecules, until apoptosis has spread to every nook and cranny of the cell."

To see how death takes over a single cell, Cheng and Ferrell used Xenopus frog eggs. One egg is a single cell, and as cells go, these are enormous, making them a prime candidate to observe how death spreads from one end of the cell to the other, which can be done with the naked eye.

To start, the two scientists took fluid from the egg and inserted it into Teflon tubes, which were several millimeters long, and initiated apoptosis through a molecular "death signal." By using a fluorescent technique linked to the activation of apoptosis, Ferrell and Cheng could watch as the bright green glow moved its way down the tube at a constant speed, indicating that apoptosis was spreading via trigger waves, as opposed to some other more rudimentary mechanism, such as diffusion, which slows down as it moves.

The question was, did apoptosis also spread like that in cells as they naturally occur?

Turning to fluorescence microscopy here proved more difficult, as intact frog eggs are quite opaque. However, Cheng and Ferrell noticed that when frog eggs die, a sort of ripple of pigmentation occurs at the egg's surface. The scientists saw that during death, a dark ripple moved like a curved line across the egg at a constant speed from one side to the other. The speed of this surface wave, which was constant and did not slow down, tipped them off to trigger waves here too. So to further confirm, they analyzed individual dying eggs: Every egg that had undergone this surface wave contained activated caspase, whereas the eggs that had not yet undergone the waves did not --more evidence that trigger waves propagate cell death in an intact cell too.

A wave of trigger waves

So far, apoptosis is the only form of cell death in which trigger waves have been identified, but Ferrell is investigating other processes in biology to see if the continual waves might play a role.

Now, they're looking into whether trigger waves might be responsible for how our innate immune response spreads from cell to cell. Viruses spread from cell to cell through trigger waves, so it makes sense that our initial line of immune defense might employ the same tactic.

"We have all this information on proteins and genes in all sorts of organisms, and we're trying to understand what the recurring themes are," Ferrell said. "We show that long-range communication can be accomplished by trigger waves, which depend on things like positive feedback loops, thresholds and spatial coupling mechanisms. These ingredients are present all over the place in biological regulation. Now we want to know where else trigger waves are found."
-end-
Ferrell is a member of Stanford's Bio-X and the Stanford Cancer Institute.

The study was funded by the National Institutes of Health (grants R01 GM110564 and P50 GM107615).

Stanford's departments of Chemical and Systems Biology and of Biochemistry also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit http://med.stanford.edu.

media contact: Hanae Armitage at (650) 725-5376 (harmitag@stanford.edu)

Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)

Stanford Medicine

Related Cell Death Articles:

New players in the programmed cell death mechanism
Skoltech researchers have identified a set of proteins that are important in the process of apoptosis, or programmed cell death.
Tumors hijack the cell death pathway to live
Cancer cells avoid an immune system attack after radiation by commandeering a cell signaling pathway that helps dying cells avoid triggering an immune response, a new study led by UTSW scientists suggests.
How trans fats assist cell death
Tohoku University researchers in Japan have uncovered a molecular link between some trans fats and a variety of disorders, including cardiovascular and neurodegenerative diseases.
Bacteria can 'outsmart' programmed cell death
To be able to multiply, bacteria that cause diarrhoea block mediators of programmed cell death, a new study in 'Nature Microbiology' shows.
Breaking the dogma: Key cell death regulator has more than one way to get the job done
Immunologists from St. Jude Children's Research Hospital have revealed two independent mechanisms driving self-defense molecules to trigger cell death.
Cell death or cancer growth: A question of cohesion
Activation of CD95, a receptor found on all cancer cells, triggers programmed cell death -- or does the opposite, namely stimulates cancer cell growth.
Cell death blocker prevents healthy cells from dying
Researchers have discovered a proof-of-concept drug that can prevent healthy cells from dying in the laboratory.
Road to cell death mapped in the Alzheimer's brain
Scientists have identified a new mechanism that accelerates aging in the brain and gives rise to the most devastating biological features of Alzheimer's disease.
Preventing cell death as novel therapeutic strategy for rheumatoid arthritis
A collaborative study by research groups from the University of Cologne, VIB, Ghent University, the Βiomedical Sciences Research Center 'Alexander Fleming' in Athens and the University of Tokyo identified a new molecular mechanism causing rheumatoid arthritis.
Atherosclerosis: Induced cell death destabilizes plaques
Many chronic disorders arise from misdirected immune responses. A Ludwig-Maximilians-Universitaet (LMU) in Munich team led by Oliver Söhnlein now shows that neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death and that a tailored peptide inhibits the process.
More Cell Death News and Cell Death Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.