Nav: Home

Marine mammals lack functional gene to defend against popular pesticide

August 09, 2018

PITTSBURGH, Aug. 9, 2018 - As marine mammals evolved to make water their primary habitat, they lost the ability to make a protein that defends humans and other land-dwelling mammals from the neurotoxic effects of a popular man-made pesticide, according to new research from the University of Pittsburgh School of Medicine.

The implications of this discovery, announced today in Science, led researchers to call for monitoring our waterways to learn more about the impact of pesticides and agricultural run-off on marine mammals, such as dolphins, manatees, seals and whales. The research also may shed further light on the function of the gene encoding this protein in humans.

"We need to determine if marine mammals are, indeed, at an elevated risk of serious neurological damage from these pesticides because they biologically lack the ability to break them down, or if they've somehow adapted to avoid such damage in an as-yet undiscovered way," said senior author Nathan L. Clark, Ph.D., associate professor in Pitt's Department of Computational and Systems Biology, and the Pittsburgh Center for Evolutionary Biology and Medicine. "Either way, this is the kind of serendipitous finding that results from curiosity-driven scientific research. It is helping us to understand what our genes are doing and the impact the environment can have on them."

Clark and lead author Wynn K. Meyer, Ph.D., a postdoctoral associate in his laboratory, knew from previous research by other scientists that some genes behind smelling and tasting lost their function during the evolution of marine mammals. They set out to see what other genes conserved in land-dwelling mammals had lost function in marine mammals.

By analyzing DNA sequences from five species of marine mammals and 53 species of terrestrial mammals, the team found that Paraoxonase 1 (PON1), was the gene that best matched the pattern of losing function in marine mammals while retaining function in all terrestrial mammals. PON1 even beat out several genes responsible for smell and taste, senses that marine mammals don't rely on much.

In humans and other terrestrial mammals, PON1 reduces cellular damage caused by unstable oxygen atoms. It also protects us from organophosphates, some of which are pesticides that kill insects - which lack PON1 - by disrupting their neurological systems.

Clark and Meyer worked with Joseph Gaspard, Ph.D., director of science and conservation at the Pittsburgh Zoo & PPG Aquarium, and Robert K. Bonde, Ph.D., now a scientist emeritus at the U.S. Geological Survey's Wetland and Aquatic Research Center, to obtain marine mammal blood samples from U.S. and international scientists and conservation biologists. Collaborators at the University of Washington reacted blood samples from several marine mammals with an organophosphate byproduct and observed what happened. The blood did not break down the organophosphate byproduct the way it does in land mammals, indicating that, unless a different biological mechanism is protecting the marine mammals, they would be susceptible to "organophosphate poisoning," a form of poisoning that results from the buildup of chemical signals in the body, especially the brain.

In an attempt to learn why marine mammals lost PON1 function, the researchers traced back when the function was lost in three different groups of marine mammals. Whales and dolphins lost it soon after they split from their common ancestor with hippopotamuses 53 million years ago; manatees lost it after their split from their common ancestor with elephants 64 million years ago. But some seals likely lost PON1 function more recently, at most 21 million years ago and possibly in very recent times.

"The big question is, why did they lose function at PON1 in the first place?" said Meyer. "It's hard to tell whether it was no longer necessary or whether it was preventing them from adapting to a marine environment. We know that ancient marine environments didn't have organophosphate pesticides, so we think the loss might instead be related to PON1's role in responding to the extreme oxidative stress generated by long periods of diving and rapid resurfacing. If we can figure out why these species don't have functional PON1, we might learn more about the function of PON1 in human health, while also uncovering potential clues to help protect marine mammals most at risk."

As an example of the potential real-world consequences of losing function at PON1, the researchers explain in their scientific manuscript that in Florida, "agricultural use of organophosphate pesticides is common and runoff can drain into manatee habitats. In Brevard County, where 70 percent of Atlantic Coast manatees are estimated to migrate or seasonally reside, agricultural lands frequently abut manatee protection zones and waterways."

The scientists believe the next step is to launch a study that directly observes marine mammals during and shortly after periods of excess agricultural organophosphate run-off. Such a project would require increased monitoring of marine mammal habitats, as well as testing of tissues from deceased marine mammals for evidence of organophosphate exposure. The most recent estimate the research team could find of organophosphate levels in manatee habitats in Florida is a decade old, Clark said.

"Marine mammals, such as manatees or bottlenose dolphins, are sentinel species - the canary in the coal mine," said Clark. "If you follow their health, it will tell you a lot about potential environmental issues that could eventually affect humans."
-end-
Additional authors on this research include Jerrica Jamison, Raghavendran Partha, M.Tech., Amanda Kowalczyk, B.S., Charles Kronk, B.S., and Maria Chikina, Ph.D., all of Pitt; Rebecca Richter, B.S., Judit Marsillach, Ph.D., and Clement E. Furlong, Ph.D., all of the University of Washington; Stacy E. Woods, Ph.D., M.P.H., of Johns Hopkins University; Daniel E. Crocker, Ph.D., of Sonoma State University; and Janet M. Lanyon, Ph.D., of the University of Queensland.

This study was supported by National Institutes of Health grants R01HG009299, U54 HG008540 and T32 EB009403. Collaborators were supported by funds from the Biotechnology Research Gift Fund, University of Washington, Division of Medical Genetics, and by grant 16SDG30300009 from the American Heart Association. Marine mammal samples were collected with funds from the Winifred Violet Scott Charitable Trust, the Sea World Research and Rescue Foundation, and the U.S. Geological Survey.

About the University of Pittsburgh Schools of the Health Sciences

The University of Pittsburgh Schools of the Health Sciences include the schools of Medicine, Nursing, Dental Medicine, Pharmacy, Health and Rehabilitation Sciences and the Graduate School of Public Health. The schools serve as the academic partner to the UPMC (University of Pittsburgh Medical Center). Together, their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care. Since 1998, Pitt and its affiliated university faculty have ranked among the top 10 educational institutions in grant support from the National Institutes of Health. For additional information about the Schools of the Health Sciences, please visit http://www.health.pitt.edu.

http://www.upmc.com/media

University of Pittsburgh Schools of the Health Sciences

Related Pesticides Articles:

Nanozymes -- efficient antidote against pesticides
Members of the Faculty of Chemistry of the Lomonosov Moscow State University have developed novel nanosized agents -- nanozymes, which could be used as efficient protective and antidote modalities against the impact of neurotoxic organophosphorous compounds: pesticides and chemical warfare agents.
Study examines pesticides' impact on wood frogs
A new study looks at how neonicotinoid pesticides affect wood frogs, which use surface waters in agricultural environments to breed and reproduce.
USDA announces $1.8 million for research on next generation pesticides
The US Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) today announced $1.8 million in available funding to research new, environmentally friendly pesticides and innovative tools and strategies to replace an older treatment, methyl bromide.
Light therapy could save bees from deadly pesticides
Treating bees with light therapy can counteract the harmful effects of neonicotinoid pesticides and improve survival rates of poisoned bees, finds a new UCL study.
The effects of pesticides on soil organisms are complex
There are significant interactions between soil management factors, including pesticide application, with respect to effects on soil organisms.
Pesticides used to help bees may actually harm them
Honeybees from chlorothalanil-treated hives showed the greatest change in gut microbiome.
Research associates some pesticides with respiratory wheeze in farmers
New research from North Carolina State University connects several pesticides commonly used by farmers with both allergic and non-allergic wheeze, which can be a sensitive marker for early airway problems.
Electronic nose smells pesticides and nerve gas
Detecting pesticides and nerve gas in very low concentrations. An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven, Belgium, have made it possible.
Honeybees pick up 'astonishing' number of pesticides via non-crop plants
A Purdue University study shows that honeybees collect the vast majority of their pollen from plants other than crops, even in areas dominated by corn and soybeans, and that pollen is consistently contaminated with a host of agricultural and urban pesticides throughout the growing season.
Common pesticides kill amphibian parasites, study finds
A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians.

Related Pesticides Reading:

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#500 500th Episode
This week we turn 500! To celebrate, we're taking the opportunity to go off format, talk about the journey through 500 episodes, and answer questions from our lovely listeners. Join hosts Bethany Brookshire and Rachelle Saunders as we talk through the show's history, how we've grown and changed, and what we love about the Science for the People. Here's to 500 more episodes!