Nav: Home

Ebola virus experts discover powerful, new approach for future therapeutics

August 09, 2018

A one-two punch of powerful antibodies may be the best way to stop Ebola virus, reports an international team of scientists in the journal Cell. Their findings suggest new therapies should disable Ebola virus's infection machinery and spark the patient's immune system to call in reinforcements.

"This study presents results from an unprecedented international collaboration and demonstrates how 43 previously competing labs can together accelerate therapeutics and vaccine design," says Erica Ollmann Saphire, PhD, professor at Scripps Research and director of the Viral Hemorrhagic Fever Immunotherapeutic Consortium (VIC).

From 2013-2016, West Africa faced the deadliest Ebola outbreak the world has ever seen. By the time the outbreak was declared over, 11,325 people had died. The VIC is an international group of the world's leading virologists, immunologists, systems biologists and structural biologists working to stop an outbreak on that scale from ever striking again.

The VIC researchers aim to understand which Ebola-fighting antibodies are best-and why. The hope is that the most effective antibodies can be combined in a therapeutic "cocktail." Unlike an Ebola vaccine, these cocktails could be given to those already infected, which is important for stopping a disease that tends to emerge unexpectedly in remote locations.

Ollmann Saphire and her colleagues in the VIC have published more than 40 studies in just the last five years. This landmark study is the first-ever side-by-side comparison of 171 antibodies against Ebola virus and other related viruses, known as filoviruses. All antibodies in the panel were donated by different labs around the world, and many had not been previously characterized in such extensive detail.

"Through the VIC, we could test a larger pool of antibodies in parallel, which increased the potential to detect statistically significant relationships between antibody features and protection," says Saphire. "We used this global pool of antibodies to evaluate, and streamline, the research pipeline itself."

In addition to identifying links between antibody target locations and activity, VIC researchers tested this huge pool of antibodies to reveal which antibodies "neutralized" the virus, why neutralization assays so often disagree, and whether or not neutralization in test tubes adequately predicted how well these antibodies would protect live animals from Ebola virus infection. Unexpectedly, neutralization alone was not always associated with the protective ability of an antibody.

Notably, the scientists found nine antibodies that protected mice from infection without neutralizing the virus in test tubes. These antibodies likely fight infection by interacting with an infected person's immune system, helping orchestrate a better immune response to the virus.

This "immune effector" activity is featured in the team's companion study published simultaneously in Cell Host & Microbe. "The ability to evoke an immune response will likely represent a new avenue of study for therapeutic antibodies for Ebola virus infection," says Sharon Schendel, project manager for the VIC and science writer in the Saphire lab.

From the large body of results, VIC member and Scripps Research faculty member Kristian Andersen, PhD, and his graduate student Karthik Gangavarapu developed a network describing how each antibody feature correlates to protection, which can serve as a guide to predict whether newly identified antibodies will have therapeutic value. Saphire says the next steps for the VIC are to further test promising antibody cocktails in non-human primates. The team will also pursue engineering of antibodies that carry signature features to better drive immune system response.
-end-
Authors of the study, "Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection," included scientists at Scripps Research; Translational Institute, Scripps Research; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology; Albert Einstein College of Medicine; University of Wisconsin, Madison; United States Army Research Institute for Infectious Diseases; Public Health Agency of Canada; Los Alamos National Laboratory, Integral Molecular; Emory University School of Medicine; Integrated BioTherapeutics; Galveston National Laboratory, University of Texas Medical Branch; Vanderbilt University Medical Center; University of Texas at Austin; Icahn School of Medicine at Mount Sinai; Regeneron Pharmaceuticals, Inc.; Emergent BioSolutions; Mapp Biopharmaceutical; University of Oxford, John Radcliffe Hospital; Hokkaido University; Université Lyon; Adimab, LLC; Singapore Immunology Network, Agency for Science, Technology and Research; Université Laval Quebec; and University of Tokyo.

The study was supported by the National Institutes of Health's National Institute of Allergy and Infectious Diseases (grant U19 AI109762). Funding was also provided by NIH grant U19AI135995 and contract HHSN272201400058C, and by Human Therapeutic Monoclonal Antibodies Platform IAF311007.

About Scripps Research

Scripps Research is ranked the most influential scientific institution in the world for its impact on innovation. A nonprofit research organization, Scripps expands basic knowledge in the biosciences and uses these fundamental advancements to develop profound innovations that improve well-being. Scripps researchers lead breakthrough studies that address the world's most pressing health concerns, accelerating the creation and delivery of medical breakthroughs to better human health across the globe. Our educational and training programs mold talented and committed students and postdocs into the next generation of leading scientists.

Scripps Research Institute

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

The Immune System, 4th Edition
by Peter Parham (Author)

How the Immune System Works (The How it Works Series)
by Lauren M. Sompayrac (Author)

Basic Immunology: Functions and Disorders of the Immune System
by Abul K. Abbas MBBS (Author), Andrew H. H. Lichtman MD PhD (Author), Shiv Pillai MBBS PhD (Author)

The Immune System Recovery Plan: A Doctor's 4-Step Program to Treat Autoimmune Disease
by Susan Blum (Author), Mark Hyman (Foreword), Michele Bender (Foreword)

The Immune System: A Very Short Introduction (Very Short Introductions)
by Paul Klenerman (Author)

The Immune System, 3rd Edition
by Peter Parham (Author)

The Complete Anti-Inflammatory Diet for Beginners: A No-Stress Meal Plan with Easy Recipes to Heal the Immune System
by Dorothy Calimeris (Author), Lulu Cook (Author)

A Guide to Transfer Factors and Immune System Health: 2nd edition, Helping the body heal itself by strengthening cell-mediated immunity
by Aaron White PhD (Author)

The Immune System Cure: Optimize Your Immune System in 30 Days-The Natural Way!
by Lorna Vanderheaghe (Author)

Boost Your Immune System: 7 Steps You Can Start TODAY To Regain Your Health and Prevent Disease (Book 1)
by InterConnections, LLC

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#500 500th Episode
This week we turn 500! To celebrate, we're taking the opportunity to go off format, talk about the journey through 500 episodes, and answer questions from our lovely listeners. Join hosts Bethany Brookshire and Rachelle Saunders as we talk through the show's history, how we've grown and changed, and what we love about the Science for the People. Here's to 500 more episodes!