NIH award will enable design of brain tumor treatment that captures migrating cancer cells

August 10, 2010

The Georgia Institute of Technology has received a EUREKA grant from the National Institutes of Health (NIH) to design a new way to treat invasive brain tumors by capturing the migrating cells that spread the disease. The EUREKA -- Exceptional, Unconventional Research Enabling Knowledge Acceleration -- program helps scientists test new, unconventional ideas or tackle major methodological or technical challenges.

The research team plans to develop a system that will excavate brain tumor cells by directing them away from their location in the interior of the brain to a more external location where they can be removed or killed. Nanofiber-based polymer thin films coated with biochemical cues will be aligned in the brain to provide a corridor for tumor cells to follow to a gel-based 'sink' where they will be captured and safely removed or encouraged to die through chemical signaling.

"We believe this is the first attempt to exploit the invasive, migrating properties of brain tumors by engineering a path for the tumors to move away from the primary site to a location where treatment can occur," said lead investigator Ravi Bellamkonda, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Collaborating with Bellamkonda on this project are Tobey MacDonald, director of the pediatric neuro-oncology program at the Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta and an associate professor of pediatrics at the Emory University School of Medicine; and Barun Brahma, a pediatric neurosurgeon at Children's Healthcare of Atlanta. The initial partnership between the researchers began with seed funding from the Georgia Cancer Coalition and Ian's Friends Foundation.

The National Cancer Institute is providing more than $1 million for the EUREKA grant. For the project, Bellamkonda, MacDonald and Brahma are focusing on treating medulloblastomas -- highly malignant brain tumors that account for more than 20 percent of pediatric brain tumors.

"Medulloblastoma is the most common malignant brain tumor we see in children, but unfortunately the five-year survival rates for children with this cancer only range from 50 to 70 percent and the majority of survivors have a significantly reduced quality of life as a result of treatment-related toxicities," said MacDonald, who is also a Georgia Cancer Coalition Distinguished Scholar. "An increasing number of survivors are also at risk for developing secondary malignancies as a result of the treatment we now administer. Clearly we have to do a much better job at treating these tumors; however, improving survival while reducing the toxic effects of treatment will require a highly innovative approach."

Medulloblastoma treatment currently involves surgery followed by radiation therapy to the entire brain and spine and up to one year of intensive intravenous chemotherapy. However, radiation is often delayed or omitted altogether in young children due to its debilitating long-term side effects on the developing central nervous system.

These changes to the timing of radiation administration can adversely impact survival. And while surgery is a mainstay of treatment, it too can cause a significant loss of cognitive and neurological function due to the critical areas of the brain that may be involved by the tumor's spread but require an extensive surgical area to remove as much of the tumor as possible.

This EUREKA grant aims to address the urgent need to develop therapies to safely treat invasive medulloblastomas in children.

"Our plan is to deliver the tumor to the drug -- by directing tumor cells to a specially engineered gel that can be removed or designed to kill the cells -- rather than the current strategy of delivering the drug to the tumor, which is problematic due to the irregular vasculature and poor diffusivity of the tumor tissue," explained Bellamkonda, who is also a Georgia Cancer Coalition Distinguished Scholar.

The researchers plan to design a polymer thin film system that will include topographical and biochemical cues similar to those that guide the initial brain tumor invasion. The thin films will be rolled up and deployed with minimally invasive catheters. Because neural tissue will not be suctioned and the films are very thin, there should be minimal tissue and tumor disruption.

The films will also be non-toxic to the patient because they will be engineered with biocompatible, stable polymers. In previous studies, the polymers have been implanted in the nervous systems of small animals for more than 16 weeks with no adverse tissue reactions.

"This research represents a radical approach to treating invasive tumors that is based on the universal properties and mechanics of cell motility and the migration characteristic of metastasis, regardless of the molecular and genetic origins of the tumor," added Bellamkonda.

If successful, this approach would identify a new and innovative way to treat pediatric medulloblastomas and has the potential to open a new avenue for the treatment of other invasive solid tumors, such as brain stem tumors. These cancers are incurable because they are located in an inoperable region and/or they are resistant or inaccessible to the delivery of chemotherapy agents.
-end-


Georgia Institute of Technology

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.