Molecular imaging identifies high-risk patients with heart disease

August 10, 2010

Reston, Va.--A study published in the August Journal of Nuclear Medicine (JNM) finds that molecular imaging--a non-invasive imaging procedure--can identify high-risk patients with potentially life-threatening cardiovascular conditions and help physicians determine which patients are best suited for implantable cardioverter defibrillator (ICD) therapy.

"If the molecular imaging techniques are used for appropriate selection of ICD candidates, not only overuse but also underuse of ICD could be avoided and the assessment may be shown to be more cost-effective," said Kimio Nishisato, M.D., a physician in the cardiology division of Muroram City General Hospital, Muroram, Japan, and corresponding author for the study.

According to researchers from Sapporo University, Sapporo, Japan, the study shows that molecular imaging can play an important role in diagnosing and guiding the treatment strategy for arrhythmia, coronary artery disease and heart failure.

"This research holds significant potential for the detection, diagnosis and treatment of many common cardiovascular conditions," said Tomoaki Nakata, M.D., Ph.D., an associate professor at the Sapporo Medical University School of Medicine and director of the Hokkaido Prefectural Esashi Hospital, Japan. "With molecular imaging, physicians can improve patient care by pinpointing the precise location of the disease in order to eliminate the need for invasive medical devices and unnecessary surgical techniques." Nakata adds that molecular imaging can also reduce unnecessary medical costs by better targeting treatment for each individual patient.

In this study, researchers hypothesized that both the impairment of myocardial perfusion and/or cell viability and cardiac sympathetic innervations are responsible for heart arrhythmia and sudden cardiac death. However, there was no established reliable method, including a molecular imaging technique which is highly objective, reproducible and quantitative. The researchers investigated prognostic implications of cardiac pre-synaptic sympathetic function quantified by cardiac MIBG activity and myocyte damage or viability quantified by cardiac tetrofosmin activity in patients treated with prophylactic use of ICD, by correlating with lethal arrhythmic events which would have been documented during a prospective follow-up. Based on these aspects, the study is the first to show the efficacies of the method for more accurate identification of patients at greater risk of lethal arrhythmias and sudden cardiac death (SCD).

"Sudden cardiac death due to lethal arrhythmia represents an important health care problem in many developed countries," said Ichiro Matsunari, M.D., Ph.D., director of the clinical research department at the Medical & Pharmacological Research Center Foundation, Hakui, Japan, and author of an invited perspective also published in the August JNM. "While implantable cardioverter defibrillator therapy is an effective option over anti-arrhythmic medications to prevent SCD, the balance of clinical benefits, efficacy and risks is still a matter of discussion."

Matsunari adds that better, more precise strategies such as the molecular imaging technique used in this study are needed to identify high-risk patients for SCD, who are most likely to benefit from ICD therapy. SCD is often the first manifestation of an underlying disease--but one that current treatments such as ICD cannot always detect. Molecular imaging helps guide diagnosis and treatment as well as helps avoid unnecessary ICD treatment.
-end-
Authors of "Impaired Cardiac Sympathetic Innervation and Myocardial Perfusion Are Related to Lethal Arrhythmia: Quantification of Cardiac Tracers in Patients with ICDs" include: Kimio Nishisato, Division of Cardiology, Muroram City General Hospital, Muroran, Japan; Akiyoshi Hashimoto, Tomoaki Nakata, Takahiro Doi, Hitomi Yamamoto, Shinya Shimoshige, Satoshi Yuda, Kazufumi Tsuchihashi and Kazuaki Shimamoto, Sapporo Medical University School of Medicine, Sapporo, Japan; Daigo Nagahara, Obihiro-Kosei General Hospital, Obihiro, Japan.

Authors of "123I-Metaiodobenzylguanidine Imaging in the Era of Implantable Cardioverter Defibrillators: Beyond Ejection Fraction" include Ichiro Matsunari, Medical and Pharmacological Research Center Foundation, Hakui, Japan; Junichi Taki, Kenichi Nakajima and Seigo Kinuya, Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan.

Please visit the SNM Newsroom to view the PDF of the study. To schedule an interview with the researchers, please contact Amy Shaw at (703) 652-6773 or ashaw@snm.org, or Jane Kollmer at (703) 326-1184 or jkollmer@snm.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.



About SNM--Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snm.org.

Society of Nuclear Medicine

Related Molecular Imaging Articles from Brightsurf:

New technique offers higher resolution molecular imaging and analysis
The new approach from Northwestern Engineering could help researchers understand more complicated biomolecular interactions and characterize cells and diseases at the single-molecule level.

Molecular imaging offers insight into therapy outcomes for neuroendocrine tumor patients
A new proof-of-concept study published in the May issue of The Journal of Nuclear Medicine has demonstrated that molecular imaging can be used for identifying early response to 177Lu-DOTATATE treatment in neuroendocrine tumor patients.

Non-invasive imaging method spots cancer at the molecular level
Researchers for the first time have combined a powerful microscopy technique with automated image analysis algorithms to distinguish between healthy and metastatic cancerous tissue without relying on invasive biopsies or the use of a contrast dye.

Molecular imaging suggests smokers may have impaired neuroimmune function
Research presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNM MI) shows preliminary evidence that tobacco smokers may have reduced neuroimmune function compared with nonsmokers.

Novel noninvasive molecular imaging for monitoring rheumatoid arthritis
A first-in-human Phase 1/Phase II study demonstrates that intravenous administration of the radiopharmaceutical imaging agent technetium-99m (99mTc) tilmanocept promises to be a safe, well-tolerated, noninvasive means of monitoring rheumatoid arthritis disease activity.

Improving molecular imaging using a deep learning approach
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed using a new deep learning approach to image reconstruction developed by researchers at Rensselaer Polytechnic Institute.

Nanoplatform developed with three molecular imaging modalities for tumor diagnosis
Nanotechnology and biotechnology are bringing us increasingly closer to personalised cancer treatment.

Study suggests molecular imaging strategy for determining molecular classifications of NSCLC
Recent findings suggest a novel positron emission tomography (PET) imaging approach determining epidermal growth factor receptor (EGFR) mutation status for improved lung cancer patient management.

New imaging technique able to watch molecular dynamics of neurodegenerative diseases
Researchers have developed a fast and practical molecular-scale imaging technique that could let scientists view never-before-seen dynamics of biological processes involved in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.

Combined optical and molecular imaging could guide breast-conserving surgery
Breast-conserving surgery is the primary treatment for early-stage breast cancer, but more accurate techniques are needed to assess resection margins during surgery to avoid the need for follow-up surgeries.

Read More: Molecular Imaging News and Molecular Imaging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.