Nav: Home

Engineering a better biofuel

August 10, 2016

While the bacteria E. coli is often considered a bad bug, researchers commonly use laboratory-adapted E. coli that lacks the features that can make humans sick, but can grow just as fast. That same quality allows it to transform into the tiniest of factories: when its chemical production properties are harnessed, E. coli has the potential to crank out biofuels, pharmaceuticals and other useful products.

Now, a team from the School of Engineering & Applied Science at Washington University in St. Louis has developed a way to make the production of certain biofuels in E. coli much more efficient. Fuzhong Zhang, assistant professor in the Department of Energy, Environmental & Chemical Engineering, along with researchers in his lab, have discovered a new method to cut out a major stumbling block to production process.

Their findings were recently published in the journal Metabolic Engineering.

"It's a critical step that we've figured out how to solve this problem," Zhang said.

Branched-chain fatty acids (BCFA) are important precursors to the production of freeze-resistant or improved cold-flow biofuels. However, making it in bacterial hosts is difficult. It's co-produced with different compounds called straight-chain fatty acids (SCFA), which have inferior fuel properties. Past attempts to engineer E. coli that churned out BCFA also made a large amount of SCFA, and made it difficult to isolate the BCFA for future use.

"From the process aspect, common bacteria produce mostly SCFA," Zhang said. "That is really not the best fuel to use. Previously, the best you could do was a 20 percent BCFA concentration. Then you needed to use some additional chemical processes to separate the BCFA from the SCFA and enrich it. It consumes so much energy that it's not cost-effective.

"Instead, our approach engineers this organism so it can produce something as close to 100 percent BCFA as possible," he said.

Zhang's lab has previously researched methods to reduce SCFA concentrations in E. coli. This newest paper further improves upon that work. By developing two different protein pathways that chemically affect the bacteria, Zhang's team fixed what it called a bottleneck in the BCFA production line. The protein pathways enabled the E. coli to boost its BCFA manufacture to 80 percent of all fuel products.

"It's a higher quality," said Gayle Bentley, a doctoral student in Zhang's lab, and the paper's lead author. "A lot of people have been making these SCFA fuels, and while that's important work, they don't have the improved qualities like we're generating. The difference is quite significant."

Now that the chemical workaround has been discovered, Zhang and Bentley said the applications for their work have potential to expand to other products derived from fatty acid compounds.

"The compounds we've made as fatty-acid forms are beneficial as a nutraceutical, effective as an anti-tumor compound," Bentley said. "It's also been shown to be effective to prevent and treat neonatal necrotizing enterocolitis. These compounds are really expensive to derive from their original source but using this platform may actually make it more economically feasible."

Said Zhang: "We really think this is an important step toward a platform that can offer a variety of different products for different applications."

Zhang is a past recipient of young faculty awards from the Defense Advanced Research Projects Agency (DARPA); the National Science Foundation; NASA; and the Air Force Office of Scientific Research. He and his lab are working with the Washington University Office of Technology Management (OTM) in regards to patent filing and licensing efforts for the new technology.
-end-
Both researchers are available for interviews. Zhang may be reached at fzhang29@wustl.edu; Bentley at gbentley@wustl.edu.

Funding for this research was provided by DARPA (D13AP00038).

The School of Engineering & Applied Science focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 90 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Washington University in St. Louis

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".