Ultrasound-triggered liposomes for on-demand, local anesthesia

August 10, 2017

Researchers at Boston Children's Hospital have found a new way to non-invasively relieve pain at local sites in the body; such systems could one day improve pain management by replacing addictive opioids and short-lasting local anesthetics.

The novel system uses ultrasound to trigger the release of nerve-blocking agents -- injected into specific sites of the body ahead of time -- when and where pain relief is needed most. A paper describing the findings was published online today in Nature Biomedical Engineering.

"Opioid abuse is a growing problem in healthcare," says the paper's senior author, Daniel Kohane, MD, PhD, a senior associate in critical care medicine at Boston Children's and professor of anesthesiology at Harvard Medical School. "In the future, this system could potentially combat that by giving patients access to non-opioid, effective nerve-blocking drugs."

"One of the most interesting aspects about this system is that the degree of nerve block can be controlled just by adjusting the duration and intensity of the ultrasound," says the paper's co-first author, Alina Rwei, a graduate researcher in Kohane's lab.

Ultrasound is commercially available and widely used in various clinical and therapeutic settings, making it an attractive technology to use as a drug "trigger."

"We envision that patients could get an injection at the hospital and then bring home a small, portable ultrasound device for triggering the nerve-blocking agent," Rwei says. "This could allow patients to manage their pain relief at-will, non-invasively."

Tailoring a sono-sensitive drug delivery system

To create the ultrasound-triggered pain relief system, Kohane's team developed liposomes -- artificial sacs that are micrometers in size -- and filled them with a nerve-blocking drug. The walls of the liposomes contain small molecules called sono-sensitizers, which are sensitive to ultrasound.

"Once the drug-filled liposomes are injected, ultrasound can be applied to penetrate tissue and cause the sensitizers to create reactive oxygen species, which react with lipids in the walls of the liposomes," Kohane says. "This opens the surface of the liposomes and releases the nerve-blocking drug into the local tissue, reducing pain."

The small sono-sensitizer molecules that the team built into the liposomes are the active component of an already-FDA-approved drug that is currently used in photodynamic therapy. Right now, the pain treatment system developed by Kohane's team can be activated by ultrasound up to three days after injection of liposomes, making it well-positioned for future translation as a post-operative pain management strategy.

"Out of all the particle delivery systems, I think liposomes are one of the most clinically-acceptable and customizable options out there," Rwei says. "Our research indicates that liposomes can be tailored to respond to near-infrared light, ultrasound and even magnetic triggers."
-end-
In addition to Kohane and Rwei, the paper's other contributors are co-first author Juan L. Paris, and co-authors Bruce Wang, Weiping Wang, Christopher D. Axon, Maria Vallet-Regi and Robert Langer.

This work was supported by the National Institutes of Health (GM073626) and the Ministerio de Economía y Competitividad, Spain (BES-2013-064182, EEBB- I-16-11313 associated with MAT2012-35556).

About Boston Children's Hospital

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 11 members of the Institute of Medicine and 10 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 415-bed comprehensive center for pediatric and adolescent health care. Boston Children's is also the primary pediatric teaching affiliate of Harvard Medical School. For more, visit our Vector and Thriving blogs and follow us on our social media channels: @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Boston Children's Hospital

Related Ultrasound Articles from Brightsurf:

An integrated approach to ultrasound imaging in medicine and biology
Announcing a new article publication for BIO Integration journal. In this editorial, Co-Editor-in-Chief, Pingtong Huang considers an integrated approach to ultrasound imaging in medicine and biology.

PLUS takes 3D ultrasound images of solids
A two-in-one technology provides 3D images of structural defects, such as those that can develop in aircraft and power plants.

Scientists develop noninvasive ultrasound neuromodulation technique
Researchers from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences developed a noninvasive ultrasound neuromodulation technique, which could potentially modulate neuronal excitability without any harm in the brain.

World's first ultrasound biosensor created in Australia
Most implantable monitors for drug levels and biomarkers invented so far rely on high tech and expensive detectors such as CT scans or MRI.

Ultrasound can make stronger 3D-printed alloys
A study just published in Nature Communications shows high frequency sound waves can have a significant impact on the inner micro-structure of 3D printed alloys, making them more consistent and stronger than those printed conventionally.

Full noncontact laser ultrasound: First human data
Conventional ultrasonography requires contact with the patient's skin with the ultrasound probe for imaging, which causes image variability due to inconsistent probe contact pressure and orientation.

Ultrasound aligns living cells in bioprinted tissues
Researchers have developed a technique to improve the characteristics of engineered tissues by using ultrasound to align living cells during the biofabrication process.

Ultrasound for thrombosis prevention
Researchers established real-time ultrasonic monitoring of the blood's aggregate state using the in vitro blood flow model.

Ultra ultrasound to transform new tech
A new, more sensitive method to measure ultrasound may revolutionize everything from medical devices to unmanned vehicles.

Shoulder 'brightness' on ultrasound may be a sign of diabetes
A shoulder muscle that appears unusually bright on ultrasound may be a warning sign of diabetes, according to a new study.

Read More: Ultrasound News and Ultrasound Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.