Nav: Home

Ice sheets of the last ice age seeded the ocean with silica

August 10, 2018

New research led by glaciologists and isotope geochemists from the University of Bristol has found that melting ice sheets provide the surrounding oceans with the essential nutrient silica.

Silica is needed by a group of marine algae (the microscopic plants of the oceans) called diatoms, who use it to build their glassy cell walls (known as frustules).

These plankton take up globally significant amounts of carbon - they remove carbon dioxide from the atmosphere via photosynthesis, and act as a natural carbon sink when they die and fall to the bottom of the ocean - and form the base of the marine food chain.

The study published today in the journal Nature Communications suggests that glacial meltwater, both in the present and during past ice ages, contains silica that could be useful in sustaining the growth of diatoms in the oceans around ice sheets, which are home to economically important fisheries and marine life.

The researchers show that the silica in glacial meltwaters from the Greenland Ice Sheet has a distinctive isotopic signature, different to the that found in other rivers.

Researchers have previously found that diatoms and sponges (which build their skeletons from silica) gradually buried in ocean sediments since the last ice age have a different silicon isotopic signature to their modern-day relatives.

This lighter isotopic signature was thought to be the result of changing diatom activity and ocean currents during and between ice ages. However, researchers now think that a change in the isotopic signature of the river waters supplied to the ocean might account for these shifts.

Dr Jon Hawkings, lead author of the study from the University of Bristol's School of Geographical Sciences, Bristol Glaciology Centre and Cabot Institute for the Environment said: "In this study we wanted to find out if silica in glacial meltwaters from a large ice sheet (Greenland) has a distinctive isotopic signature.

"If it does, then the huge quantities of meltwater coming from melting ice sheets during the deglaciation could account for some of the change in ocean silicon isotopic signature that have been recorded previously. Rapid ice sheet melting during the last ice age led to periods of sea level rise great than 3 cm per year (compared to around 0.3 cm per year at present).

"At peaks ice sheet melting an estimated 25,000 km3 of water was entering the oceans from melting ice sheets every year - this is more than three times the amount of water currently flowing from the Amazon river.

"If silica carried by ice sheet meltwaters does have a distinctive isotopic signature, then this reshapes how important ice sheets, and large deglaciation events, are in global biogeochemical cycles."

Researchers examined silica concentrations in meltwaters and the silicon isotopic signature of those meltwaters (referred to as δ30Si, which we're using as a "marker" of glacial silica), alongside a computer model using this data, and results from a marine sediment core off the coast of Iceland which shows distinctive changes in the silicon isotopic composition of sponges during periods of ice sheet collapse. They wanted to determine:
  • If glacial meltwaters have a distinct silica signal that can be used to trace inputs into the ocean

  • If there were any changes to the isotopic signal over the course of a summer melt period (which might reflect where the silica comes from within a glacier)

  • To predict the impact from rapidly melting ice sheets of the last ice age on marine ecosystems

The study concluded that glaciers and ice sheets are an under-appreciated component of the silica cycle, exporting large quantities of reactive silica into the ocean, which could be used by diatoms. This might, say researchers, have major implications for the health of marine siliceous organisms during periods of significant ice cover and rapid deglaciation.

The study showed ice sheet runoff has the lightest silicon isotopic composition ever measured in running water - values for glacial meltwaters are much lower than any measurements of non-glacial riverine runoff.

Using this data combined with a simple computer model of the ocean since the last ice age maximum (around 21,000 years ago) the study predicts that up to a third of the observed changes in the silicon isotopic signature of siliceous organisms can be explained by the melting of the massive ice sheets that at their peak covered up to 30 percent of the land surface, including much of North America and Europe, including much of the United Kingdom.

The isotopic composition also helps to explain that meltwater is sourced from further into the ice sheet as the annual melting period progresses, flushing liquid water stored hundreds of meters under the ice.

Dr Hawkings added: "Our findings re-frame the traditional view of the importance of ice sheets in biogeochemical cycles, specifically of the silica cycle.

"Previously the huge quantities of water and sediment delivered from the ice sheets of the last ice age wasn't fully considered as having a significant impact on marine chemistry and biology, but our study points that this is likely an oversight.

"Our interpretation of a number of other isotopic systems, and of changes to biogeochemical cycles since the last glacial maximum therefore likely needs re-evaluating."

There is still a lot of work needed to discover the importance of ice sheets in global nutrient cycles.

The research team will now work to establish if other glaciers carry significant quantities of isotopically distinctive silica to the oceans, by visiting a range of glaciers around Greenland (and further afield) to see if this relationship holds.

Dr Kate Hendry, one of the Bristol co-authors, is currently leading a European Research Council funded project, ICY-LAB, to provide unprecedented insights into nutrient cycling, biomineralization, and the taxonomy and biogeography of siliceous organisms in an ecologically important region near Greenland. This will link into a Leverhulme Trust funded project based in Greenland this year led by Cabot Institute Director Professor Jemma Wadham, which will further explore the role of sub-ice weathering in the global silica cycle.

These projects will further establish what the passage of glacial meltwaters and sediments from glaciers through fjord systems (meltwater and seawater mixing zones) does to silica concentration and its isotopic composition, for example what proportion of the fine sediments carried by glacial meltwaters which contain a large proportion of the "diatom-available" silica are buried in the fjord. This is important for predicting how much silica is exported further off the coast of the ice sheets into the open ocean.

The researchers are also planning to use more complex and realistic computer models to delve deeper into the potential changes in the global silica cycle since the last glacial maximum. These might include more accurate representations of ocean currents, recycling of silica in the water column, and potential changes to the marine algal community.
-end-
The work was funded by the Leverhulme Trust and the Natural Environment Research Council (NERC).

University of Bristol

Related Ice Sheet Articles:

Collapse of the European ice sheet caused chaos
Scientists have reconstructed in detail the collapse of the Eurasian ice sheet at the end of the last ice age.
Oversized landforms discovered beneath the Antarctic ice sheet
A team of scientists led by the Université libre de Bruxelles (ULB, Belgium) and the Bavarian Academy of Sciences (Germany) have now discovered an active hydrological system of water conduits and sediment ridges below the Antarctic ice sheet.
Climate change clues revealed by ice sheet collapse
The rapid decline of ancient ice sheets could help scientists predict the impact of modern-day climate and sea-level change, according to research by the universities of Stirling in Scotland and Tromsø in Norway.
Last remnant of North American ice sheet on track to vanish
The last piece of the ice sheet that once blanketed much of North America is doomed to disappear in the next several centuries, says a new study by researchers at Simon Fraser University in British Columbia and the University of Colorado Boulder.
Mysterious 'crater' on Antarctica indication of vulnerable ice sheet
The East Antarctic ice sheet is more vulnerable than expected, due to a strong wind that brings warm air and blows away the snow.
New study shows impact of Antarctic Ice Sheet on climate change
An international team of researchers has concluded that the Antarctic Ice Sheet actually plays a major role in regional and global climate variability -- a discovery that may also help explain why sea ice in the Southern Hemisphere has been increasing despite the warming of the rest of the Earth.
East Greenland ice sheet has responded to climate change over the last 7.5 million
Using marine sediment cores containing isotopes of aluminum and beryllium, a group of international researchers has discovered that East Greenland experienced deep, ongoing glacial erosion over the past 7.5 million years.
Historic shrinking of Antarctic Ice Sheet linked to CO2 spike
Twenty-three million years ago, the Antarctic Ice Sheet began to shrink, going from an expanse larger than today's to one about half its modern size.
Tracking the amount of sea ice from the Greenland ice sheet
The Greenland ice sheet records information about Arctic climate going back more than 120.000 years.
This week from AGU: Greenland's thawing ice sheet, Nepal's landslides, and more
This week from AGU are papers on Greenland's thawing ice sheet, Nepal's landslides, and four more research spotlights.

Related Ice Sheet Reading:

[Music Sheet] Yuri!!! on ICE Official Sheet Music Collection Piano de Hiku - Piano Solo/Rendan
by Yamaha Music Media (Author), taro umebayashi a.k.a milk (Composer), taku matsushiba (Composer)

Ice Castles, Theme from (Through the Eyes of Love) Sheet Piano/Vocal/Chords
by Alfred (Publisher)

Glacial Geology: Ice Sheets and Landforms
by Matthew M. Bennett (Editor), Neil F. Glasser (Editor)

Theme From Ice Castles (Through The Eyes Of Love) [Sheet Music]
by Carole Bayer & Hamlisch, Marvin Sager (Author)

Vanishing Ice: Glaciers, Ice Sheets, and Rising Seas
by Vivien Gornitz (Author)

Dynamics of Ice Sheets and Glaciers (Advances in Geophysical and Environmental Mechanics and Mathematics)
by Ralf Greve (Author), Heinz Blatter (Author)

The National Geographic Magazine / March, 2015. The War on Science (The Age of Disbelief); Luminous Life Forms; Syrian Refugees; Greenland Ice Sheet; Berlin-Athens Tension
by Editor-in-Chief: Susan Goldberg (Editor), n/a (Editor)

Cracked Ice Rag Easiest Piano Sheet Music Junior Edition

Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets (Mathematical Approaches to Geophysics)
by K. Hutter (Author)

Fantasy on Ice: Sheet (Signature Series)
by Carolyn C. Setliff (Composer)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.