Mechanism of fibrosis development discovered

August 10, 2018

Idiopathic pulmonary fibrosis (IPF) is an incurable lung disease of unknown origin with limited treatment options. Research suggests that the signaling molecule WNT5A plays a key role in the pathogenic process. Now a group of scientists from Helmholtz Zentrum München working with colleagues from the University of Denver have taken a further step towards uncovering the mechanisms responsible for the development of fibrosis: IPF is associated with the increase of extracellular vesicles that relay WNT5A signals to cells in the lungs. The study, published in the American Journal of Respiratory and Critical Care Medicine, proposes a further pharmacological biomarker and a possible therapeutic approach.

Pulmonary fibrosis is associated with the increased formation of connective tissue in the lungs, resulting in scarring (fibrosis) of functional lung tissue. This leads to a decrease in the inner surface of the extremely fine alveoli and the extensibility of the lungs, which, in turn, impedes the intake of oxygen and the release of carbon dioxide. The result is impaired lung function. IPF is a particularly aggressive form of the disease that cannot be attributed to a specific cause. The symptoms worsen rapidly. Existing drugs can slow progression of the disease but are unable to stop it permanently.

Research is therefore continuing to focus on elucidating the mechanisms underlying the pathological tissue changes associated with IPF. One approach that has been intensively pursued for several years now in the Department of Lung Repair and Regeneration (LRR) and the Institute of Lung Biology and Disease (ILBD) at Helmholtz Zentrum München aims to influence the so-called WNT signaling pathway. It is already known that the signaling molecule WNT5A is responsible for stimulating the proliferation of connective tissue cells in the lungs.

Vesicles transport scarring signals

The LRR Research Group headed by Dr. Dr. Melanie Königshoff has found that extracellular vesicles are very likely also involved in IPF. "Simply put, extracellular vesicles are tiny pouches released by cells that can contain a large number of messenger substances, such as proteins and nucleic acids," describes Dr. Mareike Lehmann, one of the authors of the study. "They are an important means of communication between cells and organs and help to ensure that the substances reach completely new sites."

Until recently, it was unclear whether and how extracellular vesicles are implicated in IPF. "We were able to show in the study that increased levels of extracellular vesicles occur in IPF patients, which then act as carriers of WNT5A," explains lead author Aina Martin-Medina. "We were also able to confirm these results in our experimental model." In addition, the authors showed in Petri dish experiments that reducing the number of vesicles decreases tissue scarring.

In further preclinical studies, the researchers now want to examine the suitability of extracellular vesicles as a pharmacological biomarker, as well as a possible therapeutic target.
-end-
Further Information

Original Publication:


Martin-Medina A. et al. (2018): Increased Extracellular Vesicles Mediate WNT-5A Signaling in Idiopathic Pulmonary Fibrosis. American journal of respiratory and critical care medicine 2018. DOI: 10.1164/rccm.201708-1580OC

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes, allergies and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Lung Repair and Regeneration Research Unit is part of the Comprehensive Pneumology Center (CPC), which is a joint undertaking of the Helmholtz Zentrum München, Ludwig Maximilian University Munich with its University Hospital, and the Asklepios Specialist Clinics Munich-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnostic tools and therapies. The LRR Research Unit examines new mechanisms and repair processes in the lungs for a better understanding that will allow the development of new therapeutic approaches. The unit also focuses on developing new methods in order to reduce the gap between pre-clinical research and its application on patients. The CPC is a facility of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung - DZL). http://www.helmholtz-muenchen.de/lrr

Contact for the media:

Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific contact:

Dr. Dr. Melanie Königshoff, Helmholtz Zentrum München - German Research Center for Environmental Health, Comprehensive Pneumology Center, Max-Lebsche-Platz 31, 81377 München, Germany - Tel. +49 89 3187 4668 - E-mail: melanie.koenigshoff@helmholtz-muenchen.de

Helmholtz Zentrum München - German Research Center for Environmental Health

Related Pulmonary Fibrosis Articles from Brightsurf:

The CNIO pave the way for a future gene therapy to reverse pulmonary fibrosis associated with ageing
''Our results indicate that a new therapy may be developed to prevent the development of pulmonary fibrosis associated with ageing,'' says CNIO's Maria Blasco, principal investigator of the study * Lung tissue of patients with pulmonary fibrosis does not regenerate because the cells involved in lung generation have damaged telomeres, the ends of the chromosomes.

Pulmonary fibrosis treatment shows proof of principle
A pre-clinical study led by scientists at Cincinnati Children's demonstrates that in mice the drug barasertib reverses the activation of fibroblasts that cause dangerous scar tissue to build up in the lungs of people with idiopathic pulmonary fibrosis (IPF).

Pulmonary embolism and COVID-19
Researchers at Henry Ford Health System in Detroit say early diagnosis of a life-threatening blood clot in the lungs led to swifter treatment intervention in COVID-19 patients.

Stem cells from placental amniotic membrane slow lung scarring in pulmonary fibrosis
In a study released today in STEM CELLS Translational Medicine (SCTM), researchers show for the first time how stem cells collected from human amniotic membrane can slow the progression of scarring in pulmonary fibrosis.

Researchers identify key mechanisms involved in pulmonary fibrosis development
Working alongside research groups from Heidelberg, researchers from Charité - Universitätsmedizin Berlin have elucidated the novel disease processes involved in the development of pulmonary fibrosis.

Bacterial protein fragment kills lung cells in pulmonary fibrosis, study finds
A bacterial protein fragment instigates lung tissue death in pulmonary fibrosis, a mysterious disease affecting millions of people worldwide, according to a new study from researchers at the University of Illinois at Urbana-Champaign and Mie University in Japan.

Closing in on liver fibrosis: Detailing the fibrosis process at unprecedented resolution
Today, there is no effective way to treat liver fibrosis.

Inhalation therapy shows promise against pulmonary fibrosis in mice, rats
A new study shows that lung stem cell secretions -- specifically exosomes and secretomes -- delivered via nebulizer, can help repair lung injuries due to multiple types of pulmonary fibrosis in mice and rats.

Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.

Short or long sleep associated with Pulmonary Fibrosis
Scientists have discovered that people who regularly sleep for more than 11 hours or less than 4 hours are 2-3 times more likely to have the incurable disease, pulmonary fibrosis, compared to those that sleep for 7 hours in a day.

Read More: Pulmonary Fibrosis News and Pulmonary Fibrosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.