Nav: Home

Breaking down the Wiedemann-Franz law

August 10, 2018

From everyday experience we know that metals are good conductors for both electricity and heat -- think inductive cooking or electronic devices warming up upon intense use. That intimate link of heat and electrical transport is no coincidence. In typical metals both sorts of conductivity arise from the flow of 'free' electrons, which move like a gas of independent particles through the material. But when fermionic carriers such as electrons interact with one another, then unexpected phenomena can arise, as Dominik Husmann, Laura Corman and colleagues in the group of Tilman Esslinger in the Department of Physics at ETH Zurich -- in collaboration with Jean-Philippe Brantut at the École Polytechnique Fédérale de Lausanne (EPFL) -- report in a paper published this week in the journal Proceedings of the National Academy of Sciences. Studying heat and particle conduction in a systems of strongly interacting fermionic atoms they found a range of puzzling behaviours that set this system apart from known systems in which the two forms of transport are coupled.

In metals, the connection of thermal and electrical conductivity is described by the Wiedemann-Franz law, which has first been formulated in 1853. In its modern form the law states that at a fixed temperature, the ratio between the two types of conductivity is constant. The value of that ratio is quite universal, being the same for a remarkably wide range of metals and conditions. That universality breaks down, however, when the carriers interact with one another. This has been observed in a handful of exotic metals hosting strongly correlated electrons. But Husmann, Corman and their co-workers have now explored the phenomenon in a system in which they had exquisite control over all relevant parameters, enabling them to monitor particle and heat transport in unprecedented detail.

Clean transport

The carriers in their experiments are fermionic lithium atoms, which they cooled to sub-microkelvin temperatures and trapped using laser beams. Initially, they confined a few hundred thousand of these atoms to two independent reservoirs that can be heated individually. Once a temperature difference between the two reservoirs had been established, they opened a tiny restriction between them -- a so-called quantum point contact -- thus initiating transport of particles and heat (see the figure). The transport channel is defined and controlled using laser light as well. The experiment therefore provides an extraordinarily clean platform for studying fermionic transport. For example, in real materials, the lattice through which the electrons flow starts to melt at high temperatures. In contrast, in the cold-atom setup, with the structures defined by light, no such 'lattice heating' occurs, making it possible to focus on the carriers themselves.

Puzzling behaviour

When Husmann et al. determined the ratio between thermal and particle conductivity in their system, they found it to be an order of magnitude below the predictions of the Wiedemann-Franz law. This deviation indicates a separation of the mechanisms responsible for particle and heat currents, in contrast to the situation so universally observed for free carriers. As a result, their system evolved into a state in which heat and particle currents vanished long before an equilibrium between the two reservoirs in terms of temperature and particle number has been reached.

Moreover, another measure for thermoelectric behaviour, the Seebeck coefficient, was found to have a value close to that expected for a non-interacting Fermi gas. This is puzzling, because in some regions of the channel the strongly interacting atoms were in the superfluid regime (in which a gas or liquid flows without viscosity) and in the prototypical superfluid, helium-4, the Seebeck coefficient is zero. This discrepancy signals a different thermoelectric character for the fermionic gas studied by the ETH team.

These findings therefore pose new challenges for microscopic modelling of strongly interacting fermion systems. At the same time, the platform established with these experiments could help to explore novel concepts for thermoelectric devices, such as coolers and engines that are based on interconverting temperature differences into particle flow, and vice versa.

ETH Zurich Department of Physics

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Pushing Electrons
by Daniel P. Weeks (Author)

The Electron
by Dennis Morris (Author)

My First Science Textbook: Electrons
by Mary Wissinger (Author), Genius Games (Contributor), John Coveyou (Contributor), Harriet Kim Anh Rodis (Contributor)

Electrons, The Building Blocks of the Universe and the Elemental Kingdom
by Ascended Master Teaching Foundation

Pushing Electrons: A Guide for Students of Organic Chemistry
by Daniel P. Weeks (Author)

Eddie the Electron
by Melissa Rooney (Author)

Electron: From Beginner to Pro: Learn to Build Cross Platform Desktop Applications using Github's Electron
by Chris Griffith (Author), Leif Wells (Author)

Electron in Action
by Steve Kinney (Author)

There Are No Electrons: Electronics for Earthlings
by Kenn Amdahl (Author)

The Enigmatic Electron: A Doorway to Particle Masses
by Malcolm H. Mac Gregor (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...