Nav: Home

Breaking down the Wiedemann-Franz law

August 10, 2018

From everyday experience we know that metals are good conductors for both electricity and heat -- think inductive cooking or electronic devices warming up upon intense use. That intimate link of heat and electrical transport is no coincidence. In typical metals both sorts of conductivity arise from the flow of 'free' electrons, which move like a gas of independent particles through the material. But when fermionic carriers such as electrons interact with one another, then unexpected phenomena can arise, as Dominik Husmann, Laura Corman and colleagues in the group of Tilman Esslinger in the Department of Physics at ETH Zurich -- in collaboration with Jean-Philippe Brantut at the École Polytechnique Fédérale de Lausanne (EPFL) -- report in a paper published this week in the journal Proceedings of the National Academy of Sciences. Studying heat and particle conduction in a systems of strongly interacting fermionic atoms they found a range of puzzling behaviours that set this system apart from known systems in which the two forms of transport are coupled.

In metals, the connection of thermal and electrical conductivity is described by the Wiedemann-Franz law, which has first been formulated in 1853. In its modern form the law states that at a fixed temperature, the ratio between the two types of conductivity is constant. The value of that ratio is quite universal, being the same for a remarkably wide range of metals and conditions. That universality breaks down, however, when the carriers interact with one another. This has been observed in a handful of exotic metals hosting strongly correlated electrons. But Husmann, Corman and their co-workers have now explored the phenomenon in a system in which they had exquisite control over all relevant parameters, enabling them to monitor particle and heat transport in unprecedented detail.

Clean transport

The carriers in their experiments are fermionic lithium atoms, which they cooled to sub-microkelvin temperatures and trapped using laser beams. Initially, they confined a few hundred thousand of these atoms to two independent reservoirs that can be heated individually. Once a temperature difference between the two reservoirs had been established, they opened a tiny restriction between them -- a so-called quantum point contact -- thus initiating transport of particles and heat (see the figure). The transport channel is defined and controlled using laser light as well. The experiment therefore provides an extraordinarily clean platform for studying fermionic transport. For example, in real materials, the lattice through which the electrons flow starts to melt at high temperatures. In contrast, in the cold-atom setup, with the structures defined by light, no such 'lattice heating' occurs, making it possible to focus on the carriers themselves.

Puzzling behaviour

When Husmann et al. determined the ratio between thermal and particle conductivity in their system, they found it to be an order of magnitude below the predictions of the Wiedemann-Franz law. This deviation indicates a separation of the mechanisms responsible for particle and heat currents, in contrast to the situation so universally observed for free carriers. As a result, their system evolved into a state in which heat and particle currents vanished long before an equilibrium between the two reservoirs in terms of temperature and particle number has been reached.

Moreover, another measure for thermoelectric behaviour, the Seebeck coefficient, was found to have a value close to that expected for a non-interacting Fermi gas. This is puzzling, because in some regions of the channel the strongly interacting atoms were in the superfluid regime (in which a gas or liquid flows without viscosity) and in the prototypical superfluid, helium-4, the Seebeck coefficient is zero. This discrepancy signals a different thermoelectric character for the fermionic gas studied by the ETH team.

These findings therefore pose new challenges for microscopic modelling of strongly interacting fermion systems. At the same time, the platform established with these experiments could help to explore novel concepts for thermoelectric devices, such as coolers and engines that are based on interconverting temperature differences into particle flow, and vice versa.

ETH Zurich Department of Physics

Related Electrons Articles:

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.