Nav: Home

The CNIO pave the way for a future gene therapy to reverse pulmonary fibrosis associated with ageing

August 10, 2020

Idiopathic pulmonary fibrosis is a potentially lethal disease for which there is currently no cure and that is associated with certain mutations or advanced age. The Telomeres and Telomerase Group at the Spanish National Cancer Research Centre (CNIO) had previously developed an effective therapy for mice with fibrosis caused by genetic defects. Now they show that the same therapy can successfully be used to treat mice with age-related fibrosis.

"With respect to humans, our results indicate that it may be possible to devise a treatment to prevent the development of pulmonary fibrosis associated with ageing," says Maria Blasco, principal investigator of the study that is published in The Journal of Cell Biology.

The treatment tested in mice is a gene therapy that activates the production of telomerase in the body. Telomerase is an enzyme that repairs the telomeres at the end of chromosomes. According to Blasco, this therapy was highly effective in animal models and no side effects were observed.

Telomere dysfunction leading to pulmonary fibrosis

Pulmonary fibrosis affects around 8,000 people in Spain. In this disease, the lung tissue becomes stiff and scarred, and patients develop progressive shortness of breath. It is thought to be caused by a combination of genetic and environmental factors. Exposure to toxic substances plays an important role, but for the disease to manifest itself the patient must be of advanced age or have an underlying genetic condition.

The CNIO team had already shown in previous studies that the genetic factors are associated with telomere dysfunction. Telomeres are structures that, like "end caps", protect the ends of chromosomes in all cells.

Back in 2015, the team generated an animal model for pulmonary fibrosis - a mouse that, among other characteristics, lacked the telomerase gene. In this mouse model, alveolar type II cells or type II pneumocytes - important for lung tissue regeneration - eventually die as a result of telomere dysfunction. As a consequence, the mice develop aggressive pulmonary fibrosis because the respiratory epithelium cannot renew itself periodically; this periodic regeneration keeps the tissue healthy and free from possible damage caused by harmful airborne substances.

Age-related fibrosis

The mouse model that lacks the telomerase gene faithfully mimics the human disease caused by mutations affecting the telomeres. However, specific mutations are found in relatively few pulmonary fibrosis cases. In the vast majority of patients, nothing points to a specific mutation, but all patients have something in common: an advanced age.

Indeed, telomeres can become defective through the mere process of ageing. The team led by Blanco have done ground-breaking research on telomeres and the ageing process. Telomeres are protein structures that cap the ends of chromosomes; they shorten with every cell division. After many rounds of cell division over the lifetime of an individual, they become so short that they can no longer protect the chromosomes. The cells interpret this as an error and stop dividing so that the tissue cannot regenerate anymore.

In the paper now published, the researchers show that telomere dysfunction associated with ageing occurs in alveolar type II cells, which play a primary role in lung tissue regeneration. The team have thus found the molecular basis of the link between pulmonary fibrosis and ageing, a link that is clearly seen in the clinical setting.

Loss of pulmonary surfactant

The new study describes the effects of ageing on lung tissue in detail. One such effect is that alveolar type II cells stop doing their job.

In addition to regenerating tissue, these cells produce and release a lipid-protein complex called pulmonary surfactant that facilitates the mechanical work done by the lungs. "Lung tissue must expand when we breathe in, six to ten times per minute, which means a great deal of physical effort. Pulmonary surfactant plays an important role in lubricating lung tissue, retaining its elasticity, and reducing the amount of work required to expand and contract it. If type II pneumocytes fail to regenerate, the surfactant is not produced, which results in lung stiffness and fibrosis," says Jesús Pérez-Gil of the Complutense University of Madrid, who participated in the study and whose team are experts in this field.

"We have observed a very clear relation between telomere status in type II pneumocytes, pulmonary surfactant production and fibrosis development in animals," Pérez-Gil adds. "Here we address the effects on telomeres at the molecular level, biological and physical changes in cells and tissues, and the consequences for the health of the animal, the whole organism.", indicates Sergio Piñeiro, first author of the study.

A therapy for all types of fibrosis

In 2018, the CNIO group developed a gene therapy that reversed pulmonary fibrosis in mice lacking the telomerase gene. This therapy was based on activating telomerase expression temporarily. A virus used as a telomerase gene carrier was injected intravenously into the mice. The effect - alveolar type II cells with long telomeres - was temporary, but lung tissue regeneration was successfully induced.

The same therapy was now used in ageing mice. And it worked in them too. "The telomerase-activating gene therapy prevented the development of fibrosis in all mice, including the ones without genetic alterations that only underwent physiological ageing," Blasco explains.

This extends the possibility of a cure for pulmonary fibrosis to virtually all cases of fibrosis, as the researchers conclude in their paper: "These findings contribute to a better understanding of the importance of [the telomerase gene] as a potential target for future therapeutic approaches in idiopathic pulmonary fibrosis."
-end-
The study was funded by the Spanish Ministry of Science, Innovation and Universities, the Carlos III Health Institute, the Community of Madrid, the Botín Foundation and Banco Santander through Santander Universidades, and World Cancer Research.

Reference paper:Telomerase treatment prevents lung pro-fibrotic pathologies associated with physiological aging. Sergio Piñeiro-Hermida, Chiara Autilio, Paula Martínez, Fátima Bosch, Jesús Pérez-Gil, Maria A. Blasco (Journal of Cell Biology, 2020). DOI: 10.1083/jcb.202002120

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Gene Therapy Articles:

Discovery challenges the foundations of gene therapy
An article published today in Science Translational Medicine by scientists from Children's Medical Research Institute has challenged one of the foundations of the gene therapy field and will help to improve strategies for treating serious genetic disorders of the liver.
Gene therapy: Novel targets come into view
Retinitis pigmentosa is the most prevalent form of congenital blindness.
A multicenter look at gene therapy for spinal muscular atrophy
A new study confirms the safety and efficacy of gene therapy in children with spinal muscular atrophy under two years old.
Gene therapy targets inner retina to combat blindness
Batten disease is a group of fatal, inherited lysosomal storage disorders that predominantly affect children.
New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).
Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.
Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.
New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.
Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.
Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.
More Gene Therapy News and Gene Therapy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.