Individual differences in the brain

August 10, 2020

Personality varies widely. There are bold and reserved individuals, who behave very differently when faced with the same environmental stimulus. What is true for humans also applies to fish: their behavior shows a range of individual differences. By selectively breeding zebrafish, scientists from the Max Planck Institute of Neurobiology were able to show that distinct personality traits rapidly emerge and manifest not only in the behavior, but also through far-reaching changes in the brain.

Young zebrafish are just five millimeters long and almost transparent. Nevertheless, the tiny fish display a spectrum of behavior in response to external stimuli. While some animals flee in panic at a loud sound, other fish remain calm. If the sound is repeated, fish in one group learn to ignore it quickly, while others never really get used to it. Between these two extremes - relaxed or skittish - there is a whole range of behavioral expressions.

Carlos Pantoja and colleagues in Herwig Baier's team were now able to show that selection for a specific behavioral trait can also change the fishes' brain activity surprisingly quickly. The researchers mated animals only within the extremely relaxed and the extremely skittish groups. After just two generations, the brains of the fry selected for skittishness differed significantly from the brains of the calm offspring.

In the transparent fish larvae, the scientists were able to observe which brain regions were activated by the loud sound. The offspring of the two behavioral extremes showed clear differences in neuronal activity in a part of the hypothalamus and in the so-called dorsal raphe nucleus. A noticeable difference between these two brain regions is that the plastic part of the hypothalamus contains neurons that secrete dopamine, while the raphe nucleus mainly produces serotonin. Dopamine and serotonin are two prominent neuromodulators that have also been associated with personality differences and even psychiatric conditions in humans.

"The ratio of cell activity in these two brain regions could regulate the sensitivity of an individual fish's reaction to the sound and how quickly it gets used to it," explains Carlos Pantoja. "However, this is certainly only one component, as there are also differences in a whole range of other brain areas."

Interestingly, the offspring of the two fish groups not only showed the expected differences in their startle response. While in the larval stage, the more relaxed fish fry was also significantly less spontaneously active. As adults, these fish then adapted much slower to a new environment than adult jumpy fish. "At first glance, this sounds paradoxical. But it could be that the early tendency to fearful overreactions tends to dampen the later stress response," says Pantoja. Similar long-term effects of early stress processing have been reported in mammals.

In both groups of fish, the dopamine-releasing part of the hypothalamus was activated during the startle reaction. However, while this region was only switched on by the sound in the relaxed fish, it was permanently active in the skittish fish. After a mere two generations of behavioral selection, these animals already seemed to be constantly prepared to escape.

"The pace at which personality traits can be shifted and fixed in evolution is remarkable," reflects Herwig Baier. "The process might be similarly rapid in populations of Homo sapiens." The zebrafish could perhaps reveal some of the involved brain structures and the genetic basis of this plasticity.
Original Publication

Carlos Pantoja, Johannes Larsch, Eva Laurell, Greg Marquart, Michael Kunst & Herwig Baier Rapid effects of selection on brain-wide activity and behavior Current Biology, online 06 August 2020


Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to