Light swirls provide insights into the quantum world

August 10, 2020

A new method uses swirls of light to enable researchers to observe previously invisible quantum states of electrons. The method was developed by physicists from Martin Luther University Halle-Wittenberg (MLU) and an international team of researchers. It promises to deliver new insights into electron motion, which is crucial in understanding material properties such as electrical conductivity, magnetism and molecular structures. The free electron laser FERMI in Italy was used to provide experimental proof and the results were published in the journal "Nature Photonics".

Optical microscopes gave the world its first glimpse of the microcosm of bacteria and cells. However, the wavelength of light limits the resolution of these microscopes. "The quantum world remains invisible," says Dr Jonas Wätzel from the Institute of Physics at MLU, who is a member of the research group led by Professor Jamal Berakdar. "In atoms, the spatial expansion of quantum particles, like electrons, is many times smaller than the wavelength of light, making imaging using traditional optical microscopy impossible."

However, light can carry a considerable amount of energy. "When the energy of a photon is strong enough to knock an electron out of the material, it is called the photoelectric effect," Wätzel explains. This effect was predicted by Einstein. Spectrometers can detect the properties of the emitted photoelectron. Photoelectron spectroscopy is currently the primary tool used to analyse a material's electronic structure. "Many quantum states aren't excited by photons and thus remain invisible," Wätzel explains.

Together with an international team of researchers, he has developed a new method to furnish the photoelectron with more information. To do this, the physicists combine conventional laser beams with swirls of light, so-called optical vortices. "This forces the light waves onto a helical pathway with an angular momentum. When they interact with matter, electrons are ejected and this helical movement is transmitted," Wätzel explains. When this is combined with spectroscopy, previously invisible properties of the material can be detected. How and whether the photoelectron interacts with the twisted wave of light and begins rotating itself, depends largely on the material properties.

The highly complex experiment was performed using the free electron laser FERMI, located in Trieste, Italy. "There was excellent agreement between the theoretical predictions and the measurement results," says Wätzel. "This spectroscopy method paves the way for new insights into the structure of matter and its interaction with light. What a molecule looks like, whether it rotates clockwise or counter-clockwise, whether a material can conduct electricity or is magnetic, all depends on the electronic structure," he explains. In effect, the method can be applied universally and can be used in a broad range of applications - from medicine to electronics and materials science.
-end-
The research was funded by the Slovenian Research Agency ARRS, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), and as part of the European "Horizon 2020" programme.

Martin-Luther-Universität Halle-Wittenberg

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.