Third breakthrough demonstrates photosynthetic hacks can boost yield, conserve water

August 10, 2020

Plants are factories that manufacture yield from light and carbon dioxide--but parts of this complex process, called photosynthesis, are hindered by a lack of raw materials and machinery. To optimize production, scientists from the Nature Plants. This is the third breakthrough for the research project Realizing Increased Photosynthetic Efficiency (RIPE); however, this photosynthetic hack has also been shown to conserve water.

"Like a factory line, plants are only as fast as their slowest machines," said

The RIPE project is an international effort led by the

A factory's productivity decreases when supplies, transportation channels, and reliable machinery are limited. To find out what limits photosynthesis, researchers have modeled each of the 170 steps of this process to identify how plants could manufacture sugars more efficiently.

In this study, the team increased crop growth by 27 percent by resolving two constraints: one in the first part of photosynthesis where plants transform light energy into chemical energy and one in the second part where carbon dioxide is fixed into sugars.

Inside two photosystems, sunlight is captured and turned into chemical energy that can be used for other processes in photosynthesis. A transport protein called plastocyanin moves electrons into the photosystem to fuel this process. But plastocyanin has a high affinity for its acceptor protein in the photosystem so it hangs around, failing to shuttle electrons back and forth efficiently.

The team addressed this first bottleneck by helping plastocyanin share the load with the addition of cytochrome c6--a more efficient transport protein that has a similar function in algae. Plastocyanin requires copper and cytochrome requires iron to function. Depending on the availability of these nutrients, algae can choose between these two transport proteins.

At the same time, the team has improved a photosynthetic bottleneck in the Calvin-Benson Cycle--wherein carbon dioxide is fixed into sugars--by bulking up the amount of a key enzyme called SBPase, borrowing the additional cellular machinery from another plant species and cyanobacteria.

By adding "cellular forklifts" to shuttle electrons into the photosystems and "cellular machinery" for the Calvin Cycle, the team also improved the crop's water-use efficiency, or the ratio of biomass produced to water lost by the plant.

"In our field trials, we discovered that these plants are using less water to make more biomass," said principal investigator

These two improvements, when combined, have been shown to increase crop productivity by 52 percent in the greenhouse. More importantly, this study showed up to a 27 percent increase in crop growth in field trials, which is the true test of any crop improvement--demonstrating that these photosynthetic hacks can boost crop production in real-world growing conditions.

"This study provides the exciting opportunity to potentially combine three confirmed and independent methods of achieving 20 percent increases in crop productivity," said RIPE Director Stephen Long, Ikenberry Endowed University Chair of Crop Sciences and Plant Biology at the

RIPE's first discovery,
Science, helped plants adapt to changing light conditions to increase yields by as much as 20 percent. The project's second breakthrough, Science, created a shortcut in how plants deal with a glitch in photosynthesis to boost productivity by 20 to 40 percent.

Next, the team plans to translate these discoveries from tobacco--a model crop used in this study as a test-bed for genetic improvements because it is easy to engineer, grow, and test--to staple food crops such as cassava, cowpea, maize, soybean and rice that are needed to feed our growing population this century. The RIPE project and its sponsors are committed to ensuring
-end-
Realizing Increased Photosynthetic Efficiency (RIPE) is engineering staple food crops to more efficiently turn the sun's energy into food to sustainably increase worldwide food production with support from the
RIPE is led by the University of Illinois in partnership with

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.