Explosive nuclear astrophysics

August 10, 2020

Analysis of meteorite content has been crucial in advancing our knowledge of the origin and evolution of our solar system. Some meteorites also contain grains of stardust. These grains predate the formation of our solar system and are now providing important insights into how the elements in the universe formed.

Working in collaboration with an international team, nuclear physicists at the U.S. Department of Energy's (DOE's) Argonne National Laboratory have made a key discovery related to the analysis of "presolar grains" found in some meteorites. This discovery has shed light on the nature of stellar explosions and the origin of chemical elements. It has also provided a new method for astronomical research.

"Tiny presolar grains, about one micron in size, are the residue from stellar explosions in the distant past, long before our solar system existed," said Dariusz Seweryniak, experimental nuclear physicist in Argonne's Physics division. The stellar debris from the explosions eventually became wedged into meteorites that crashed into the Earth.

"In turn, we were able to calculate the ratios of various sulfur isotopes produced in stellar explosions, which will allow astrophysicists to determine whether a particular presolar grain is of nova or supernova origin." -- Dariusz Seweryniak, experimental physicist in the Physics division

The major stellar explosions are of two types. One called a "nova" involves a binary star system, where a main star is orbiting a white dwarf star, an extremely dense star that can be the size of Earth but have the mass of our sun. Matter from the main star is continually being pulled away by the white dwarf because of its intense gravitational field. This deposited material initiates a thermonuclear explosion every 1,000 to 100,000 years, and the white dwarf ejects the equivalent of the mass of more than thirty Earths into interstellar space. In a "supernova," a single collapsing star explodes and ejects most of its mass.

Nova and supernova are the sources of the most frequent and violent stellar eruptions in our Galaxy, and for that reason, they have been the subject of intense astronomical investigations for decades. Much has been learned from them, for example, about the origin of the heavier elements.

"A new way of studying these phenomena is analyzing the chemical and isotopic composition of the presolar grains in meteorites," explained Seweryniak. "Of particular importance to our research is a specific nuclear reaction that occurs in nova and supernova -- proton capture on an isotope of chlorine -- which we can only indirectly study in the lab."

In conducting their research, the team pioneered a new approach for astrophysics research. It entails use of the Gamma-Ray Energy Tracking In-beam Array (GRETINA) coupled to the Fragment Mass Analyzer at the Argonne Tandem Linac Accelerator System (ATLAS), a DOE Office of Science User Facility for nuclear physics. GRETINA is a state-of-the-art detection system able to trace the path of gamma rays emitted from nuclear reactions. It is one of only two such systems in the world.

Using GRETINA, the team completed the first detailed gamma-ray spectroscopy study of an astronomically important nucleus of an isotope, argon-34. From the data, they calculated the nuclear reaction rate involving proton capture on a chlorine isotope (chlorine-33).

"In turn, we were able to calculate the ratios of various sulfur isotopes produced in stellar explosions, which will allow astrophysicists to determine whether a particular presolar grain is of nova or supernova origin," said Seweryniak. The team also applied their acquired data to gain deeper understanding of the synthesis of elements in stellar explosions.

The team is planning to continue their research with GRETINA as part of a worldwide effort to reach a comprehensive understanding of nucleosynthesis of the elements in stellar explosions.
-end-
Physical Review Letters published the team's paper, "Search of Nova Presolar Grains: γ-ray Spectroscopy of 34Ar and Its Relevance for the Astrophysical 33Cl(p, γ) reaction," in June 2020.

In addition to Seweryniak, authors include A.R.L. Kennington, G. Lotay, D.T. Doherty, C. Andreoiu, K. Auranen, M.P. Carpenter, W.N. Catford, C.M. Deibel, K. Hadynska-Klek, S. Hallam, D. Hoff, T. Huang, R.V.F. Janssens, S. Jazrawi, J. José, F.G. Kondev, T. Lauritsen, J. Li, A.M. Rogers, J. Saiz, G. Savard, S. Stolze, G.L. Wilson, and S. Zhu. Participating research institutions include the University of Surrey (UK), University of York (UK), Simon Fraser University (Canada), Louisiana State University (US), University of North Carolina (US), Duke University (US), Universitat Politècnica de Catalunya (Spain), and Institut d'Estudis Espacials de Catalunya (Spain).

This research was supported by the DOE Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

DOE/Argonne National Laboratory

Related Supernova Articles from Brightsurf:

Scientists discover supernova that outshines all others
A supernova at least twice as bright and energetic, and likely much more massive than any yet recorded has been identified by an international team of astronomers, led by the University of Birmingham.

Supernova observation first of its kind using NASA satellite
Their research, detailed in the Monthly Notices of the Royal Astronomical Society, represents the first published findings about a supernova observed using TESS, and add new insights to long-held theories about the elements left behind after a white dwarf star explodes into a supernova.

Astronomers find possible elusive star behind supernova
Astronomers may have finally found a doomed star that seemed to have avoided detection before its explosive death.

Stellar thief is the surviving companion to a supernova
Hubble found the most compelling evidence that some supernovas originate in double-star systems.

Supernova may have 'burped' before exploding
Only by increasing the rate at which telescopes monitor the sky has it been possible to catch more Fast-Evolving Luminous Transients (FELTs) and begin to understand them.

An unusual white dwarf may be a supernova leftover
Astronomers have identified a white dwarf star in our galaxy that may be the leftover remains of a recently discovered type of supernova.

Researchers show how to make your own supernova
Researchers from the University of Oxford are using the largest, most intense lasers on the planet, to for the first time, show the general public how to recreate the effects of supernovae, in a laboratory.

The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.

Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.

Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion

Read More: Supernova News and Supernova Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.