Forest growth in drier climates will be impacted by reduced snowpack, PSU study finds

August 10, 2020

A new study suggests that future reductions in seasonal snowpack as a result of climate change may negatively influence forest growth in semi-arid climates, but less so in wetter climates.

Researchers from Portland State University, U.S. Geological Survey, U.S. Forest Service and the universities of Vermont and Maine found that forest density and snowpack can influence drought stress and forest growth in ways that are important to recognize for managing forests in a changing climate.

Research sites included pine-dominated experimental forests in northern Arizona, South Dakota, and northern Minnesota.

The study -- led by Kelly Gleason, assistant professor of ecohydrology at PSU -- found that forest growth in water-limited, dryland areas is likely to be most dramatically impacted by snowpack reductions. In these semi-arid climates, reduced snowpack may negatively influence forest growth and may increase tree mortality. This was only exacerbated in high-density forests.

"Forests are a lot more vulnerable because of increasing density," Gleason said. "More trees are sharing the same amount of water, and there's less water over time because of climate change impacts."

She said that in arid climates like much of the western U.S. where water availability is driven by snow, reducing forest density through thinning will improve the resilience of these forests amid a changing climate.

By contrast, the study found that in wetter climates like Minnesota, reduced snowpack as a result of future warmer winters may positively influence forest growth, potentially by extending the growing season. The study found that in these forests, thinning would have less of an impact on the snowpack-growth relationship.
The study was published in the journal Ecological Applications. The study's co-authors include John Bradford from USGS; Anthony D'Amato from the University of Vermont; Shawn Fraver from the University of Maine; and Brian Palik and Mike Battaglia from USFS.

Portland State University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to