A new way to fabricate MXene films that block electromagnetic interference

August 10, 2020

BROOKLYN, New York, Monday, August 10, 2020 - The proliferation and miniaturization of electronics in devices, wearables medical implants and other applications has made technologies for blocking electromagnetic interference (EMI) especially important, while making their implementation more challenging. While EMI can cause disruptions in communication in critical applications, resulting in potentially disastrous consequences, traditional EMI shields require large thicknesses to be effective, hampering design flexibility.

One solution resides in MXenes, a family of 2D transition metal carbides, nitrides, and carbonitrides with potential for blocking EMI demonstrate high conductivity and excellent EMI shielding properties. The key to the commercialization of these materials is industry-scale manufacturing.

A multi-institution research team led by
The team, including lead author Jason Lipton, a Ph.D. candidate under the guidance of Taylor, as well as

Taylor said the beauty of the drop-casting method lies in its ability to allow for modulation of micrometer-scale 3D patterns on the film surface by utilizing pre-patterned substrates (such as a vinyl record, retroreflective packaging, and retroreflective tape). He added that the research leads toward more sustainable production.

"Our work illustrates how MXene nanoflakes can be manufactured into free-standing films without the need for complicated and energy-consuming instruments."

Lipton added that a critical benefit of the process is that allows for better control the thin film configuration of Ti3C2Tx (including the lateral size and the thickness).

"The conventional wisdom for making MXene films is that you should match a hydrophilic material with a hydrophilic substrate to get a smooth coating," said Lipton. "We found that if you instead try to use a hydrophobic surface it results in simple, scalable production of freestanding films because the MXenes prefer to stick together than interact with the surface. Because there are many commercially available microstructured plastics, there are a lot of options to make a 3D-patterned MXene film, and we find that choosing the right pattern can dramatically improve EMI shielding effectiveness. This opens up a lot of opportunities to study different micro-structured MXene composites for wide-ranging applications"

"The proof of concept marks an essential step towards the massive production of Ti3C2Tx films, which opens a bright venue to accelerate the commercialization of MXene products," added Taylor.
-end-
The work was supported by a U.S. Department of Energy Office of Science Graduate Research Fellowship, (SCGSR).

"
https://www.cell.com/matter/fulltext/S2590-2385(20)30290-3

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country's foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit
NYU Tandon School of Engineering

Related Applications Articles from Brightsurf:

The applications of liquid crystals have been extended to drug encapsulation
Widely used in the manufacture of LCD screens and, more recently, phosphorescent sensors, liquid crystals may also have an important application in biomedicine.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

SMART announces revolutionary new process for scientific applications
Researchers at Singapore-MIT Alliance for Research and Technology (SMART) and National University Singapore (NUS) have developed a unique method for generating and processing fluid droplets under previously unattainable conditions, providing an affordable and accessible way for chemical and biological reactions to take place in a completely isolated environment.

3D printing with applications in the pharmaceutical industry
This achievement will have applications in the pharmaceutical industry, such as in the preparation of biocompatible biosensors based in gold, which have already been shown to be effective in the detection of carcinogenic cells and tumour biomarkers.

Deep biomarkers of aging and longevity: From research to applications
The deep age predictors can help advance aging research by establishing causal relationships in nonlinear systems.

'Transformative electronics systems' to broaden wearable applications
A research team at KAIST says their new platform called 'Transformative Electronics Systems' will open a new class of electronics, allowing reconfigurable electronic interfaces to be optimized for a variety of applications.

Novel approach to ultrasound raises possibility of new medical applications
A new ultrasound technique provides a non-invasive way of assessing bone structure on the microscale.

Scientists develop a metamaterial for applications in magnonics
Physicists from Russia and Europe have demonstrated the real possibility of using superconductor/ferromagnet systems to create magnonic crystals, which will be at the core of spin-wave devices to come in the post-silicon era of electronics.

Laser solitons: Theory, topology and potential applications
Solitons have found applications in data transmission but even these gradually dissipate unless the medium they travel through has ultra-low absorbance.

Researchers design superhydrophobic 'nanoflower' for biomedical applications
Plant leaves have a natural superpower -- they're designed with water repelling characteristics.

Read More: Applications News and Applications Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.