INEEL researchers develop medical imagery breakthrough

August 11, 2003

Mammograms, X-rays and other pricey medical scans do little good if doctors can't see the tiny changes that signal early stages of disease. But such warning signs are often too subtle to spot by eye, and too complex for computers to interpret. Scientists at the U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory have developed the Change Detection System, technology that highlights slight differences between digital images. In fact, lead researcher Greg Lancaster convinced doctors of the program's power when he used it to compare scans of his own brain after he'd had a tumor removed. One medical technology firm is already looking to license the program.

This medical advance is a direct result of applying national security technology, which was initiated through funding from the DOE's Applied Technology Program. The CDS software is so quick, easy and affordable that it now boasts a spot among the 100 most technologically significant products introduced in the past year. R&D Magazine editors notified the winners in July and will feature the winning products in the September issue.

Medical imaging often involves comparing side-by-side images to see if changes have emerged. But discerning minuscule differences between two pictures can be nearly impossible. Computers even struggle with the task, laboriously scrutinizing each pixel and often finding only trivial differences in camera angle.

In the past, the best technology available for comparing images has been the flip-flop technique, which capitalizes on the visual reflex that draws our eyes toward motion. Rapidly alternating between two similar digital images on a screen creates an animation effect where identical elements seem stationary and differences appear as movement. But the flip-flop approach requires that both pictures be shot from the exact same position using a mounted camera. Since stationary cameras are impractical in many cases, flip-flop comparisons are often impossible.

Now, the CDS technology developed by the INEEL's Lancaster, James Litton Jones and Gordon Lassahn combines the strengths of rote computer analysis with the powerful human reflex elicited by the flip-flop technique. The CDS program aligns images, to within a fraction of a pixel, from hand-held or otherwise imprecise cameras. The alignment compensates for differences in camera angle, height, zoom or other distractions that previously confounded flip-flop comparisons.

Flipping between two seemingly identical images aligned by CDS reveals once imperceptible differences--tiny retinal changes signal macular degeneration, small earthen shifts herald hill erosion, footprints appear in a gravel road. The alignment process takes only seconds and the software is simple enough to be operated by a 10-year-old child. What's more, the 350 KB program can operate on a standard PC or even a handheld computer.

Such versatility makes the program attractive to everyone from security guards to working parents, field researchers to physicians. Potential applications for this technology include surveillance (detect whether doors have been opened or cars have been moved), forensics (compare tire prints or fingerprints), national security (reveal tampering with container locks and seals), home security (divulge whether drawers or rooms were disturbed), and field research (monitor environmental changes). And the medical applications became clear to Lancaster as he grappled with a brain tumor during research for the CDS project.

After doctors removed the growth, they monitored Lancaster's brain with twice yearly MRI scans to make sure the tumor didn't return. As his physicians squinted at the images, searching for the tiniest change, Lancaster worried they might miss something.

"They just stare at them to try to find differences," said Lancaster. "I said, 'Man, that's so archaic,'" Lancaster decided to test his doctors' powers of perception with and without CDS.

"I took an image, altered it ever so slightly, brought in both pictures and said, 'Can you see a difference?' They looked at the two images and admitted, 'Well, no,'" Lancaster said. "But with the flip-flop method, it really pops out. They said, 'Wow! What a tool!'"
-end-
As CDS hits the marketplace, it joins 28 previous R&D 100 winners developed at INEEL in the last 18 years. This is the 7th year in a row that INEEL has won a spot in the R&D 100 ranking.

The INEEL is a science-based, multiprogram national laboratory dedicated to supporting the U.S. Department of Energy's missions in environment, energy, science and national defense. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

Additional information on CDS, including photo illustrations, can be seen by visiting http://www.inel.gov.

DOE/Idaho National Laboratory

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.